氧化锆和复合材料 3D 打印门牙部分覆盖冠的承重能力

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-04-27 DOI:10.2186/jpr.jpr_d_23_00028
Rebecca Handermann, Nathalie Zehender, Stefan Rues, Hiro Kobayashi, Peter Rammelsberg, Franz Sebastian Schwindling
{"title":"氧化锆和复合材料 3D 打印门牙部分覆盖冠的承重能力","authors":"Rebecca Handermann, Nathalie Zehender, Stefan Rues, Hiro Kobayashi, Peter Rammelsberg, Franz Sebastian Schwindling","doi":"10.2186/jpr.jpr_d_23_00028","DOIUrl":null,"url":null,"abstract":"</p><p><b>Purpose:</b> This study investigated the fracture resistance of 0.5-mm-thick restorations for minimally invasive therapy. Anterior partial-coverage crowns composed of three-dimensional (3D)-printed 3-mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP; Lithacon 3Y210, Lithoz) and 3D-printed composite (Varseo Smile Crown plus, Bego) were compared with a control group made from milled 3Y-TZP (Cercon ht, DentsplySirona).</p><p><b>Methods:</b> Three groups each with 27 restorations were produced. For milled 3Y-TZP partial-coverage crowns, drill compensation was needed so the milling bur could access the inner surface at the incisal edge. Restoration fit was verified by cross-sectioning 12 specimens in each group. The remaining 15 restorations were sandblasted (Al2O3, 0.1 MPa) and adhesively cemented (Panavia SA, Kuraray) onto CoCr teeth. Static load-to-failure tests were performed. The load was induced on the incisal edge. The forces needed to fracture the specimens were analyzed using the Welch analysis of variance and post hoc Dunnet-T3 tests. The Weibull parameters were also calculated.</p><p><b>Results:</b> Drill compensation increased cement thickness at the loading area by 200 µm in milled 3Y-TZP restorations compared with the 3D-printed partial-coverage crowns. Fracture resistance was the highest in 3D-printed 3Y-TZP restorations (1570±661N) followed by milled 3Y-TZP (886±164N) and 3D-printed composite partial-coverage crowns (570±233 N). Milled 3Y-TZP was associated with a substantially higher Weibull modulus (m=6) than the 3D-printed materials (m=2), suggesting greater reliability.</p><p><b>Conclusions:</b> Fracture resistance increased with tighter fit, demonstrating the benefit of the geometric freedom associated with 3D-printing. Future research should focus on making 3D-printed 3Y-TZP more reliable to increase its safety in clinical use.</p>\n<p></p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load-bearing capacity of 3D-printed incisor partial-coverage crowns made from zirconia and composite\",\"authors\":\"Rebecca Handermann, Nathalie Zehender, Stefan Rues, Hiro Kobayashi, Peter Rammelsberg, Franz Sebastian Schwindling\",\"doi\":\"10.2186/jpr.jpr_d_23_00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p><b>Purpose:</b> This study investigated the fracture resistance of 0.5-mm-thick restorations for minimally invasive therapy. Anterior partial-coverage crowns composed of three-dimensional (3D)-printed 3-mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP; Lithacon 3Y210, Lithoz) and 3D-printed composite (Varseo Smile Crown plus, Bego) were compared with a control group made from milled 3Y-TZP (Cercon ht, DentsplySirona).</p><p><b>Methods:</b> Three groups each with 27 restorations were produced. For milled 3Y-TZP partial-coverage crowns, drill compensation was needed so the milling bur could access the inner surface at the incisal edge. Restoration fit was verified by cross-sectioning 12 specimens in each group. The remaining 15 restorations were sandblasted (Al2O3, 0.1 MPa) and adhesively cemented (Panavia SA, Kuraray) onto CoCr teeth. Static load-to-failure tests were performed. The load was induced on the incisal edge. The forces needed to fracture the specimens were analyzed using the Welch analysis of variance and post hoc Dunnet-T3 tests. The Weibull parameters were also calculated.</p><p><b>Results:</b> Drill compensation increased cement thickness at the loading area by 200 µm in milled 3Y-TZP restorations compared with the 3D-printed partial-coverage crowns. Fracture resistance was the highest in 3D-printed 3Y-TZP restorations (1570±661N) followed by milled 3Y-TZP (886±164N) and 3D-printed composite partial-coverage crowns (570±233 N). Milled 3Y-TZP was associated with a substantially higher Weibull modulus (m=6) than the 3D-printed materials (m=2), suggesting greater reliability.</p><p><b>Conclusions:</b> Fracture resistance increased with tighter fit, demonstrating the benefit of the geometric freedom associated with 3D-printing. Future research should focus on making 3D-printed 3Y-TZP more reliable to increase its safety in clinical use.</p>\\n<p></p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2186/jpr.jpr_d_23_00028\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2186/jpr.jpr_d_23_00028","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究调查了用于微创治疗的 0.5 毫米厚修复体的抗折性。将由三维(3D)打印的3-mol%钇稳定四方氧化锆多晶体(3Y-TZP;Lithacon 3Y210,Lithoz)和三维打印的复合材料(Varseo Smile Crown plus,Bego)组成的前牙部分覆盖冠与由研磨的3Y-TZP(Cercon ht,DentsplySirona)制成的对照组进行比较:方法:分为三组,每组 27 个修复体。对于铣制的 3Y-TZP 部分覆盖冠,需要进行钻孔补偿,这样铣刀才能进入切缘的内表面。通过对每组中的 12 个试样进行横截面检查来验证修复体的密合性。其余 15 个修复体经过喷砂处理(Al2O3,0.1 兆帕)并粘接在钴铬合金牙齿上(Panavia SA,Kuraray)。进行了静态加载-失效测试。载荷作用在切缘上。使用韦尔奇方差分析和事后 Dunnet-T3 检验分析了试样断裂所需的力。同时还计算了 Weibull 参数:结果:与三维打印的部分覆盖冠相比,研磨的3Y-TZP修复体的钻孔补偿使加载区域的骨水泥厚度增加了200微米。3D打印的3Y-TZP修复体的抗折力最高(1570±661N),其次是研磨的3Y-TZP(886±164N)和3D打印的复合材料部分覆盖冠(570±233N)。磨制的 3Y-TZP 的 Weibull 模量(m=6)远高于三维打印材料(m=2),这表明其可靠性更高:结论:抗断裂强度随着配合的紧密度增加而增加,这证明了三维打印的几何自由度带来的好处。未来的研究重点应是使三维打印的 3Y-TZP 更可靠,以提高其在临床使用中的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Load-bearing capacity of 3D-printed incisor partial-coverage crowns made from zirconia and composite

Purpose: This study investigated the fracture resistance of 0.5-mm-thick restorations for minimally invasive therapy. Anterior partial-coverage crowns composed of three-dimensional (3D)-printed 3-mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP; Lithacon 3Y210, Lithoz) and 3D-printed composite (Varseo Smile Crown plus, Bego) were compared with a control group made from milled 3Y-TZP (Cercon ht, DentsplySirona).

Methods: Three groups each with 27 restorations were produced. For milled 3Y-TZP partial-coverage crowns, drill compensation was needed so the milling bur could access the inner surface at the incisal edge. Restoration fit was verified by cross-sectioning 12 specimens in each group. The remaining 15 restorations were sandblasted (Al2O3, 0.1 MPa) and adhesively cemented (Panavia SA, Kuraray) onto CoCr teeth. Static load-to-failure tests were performed. The load was induced on the incisal edge. The forces needed to fracture the specimens were analyzed using the Welch analysis of variance and post hoc Dunnet-T3 tests. The Weibull parameters were also calculated.

Results: Drill compensation increased cement thickness at the loading area by 200 µm in milled 3Y-TZP restorations compared with the 3D-printed partial-coverage crowns. Fracture resistance was the highest in 3D-printed 3Y-TZP restorations (1570±661N) followed by milled 3Y-TZP (886±164N) and 3D-printed composite partial-coverage crowns (570±233 N). Milled 3Y-TZP was associated with a substantially higher Weibull modulus (m=6) than the 3D-printed materials (m=2), suggesting greater reliability.

Conclusions: Fracture resistance increased with tighter fit, demonstrating the benefit of the geometric freedom associated with 3D-printing. Future research should focus on making 3D-printed 3Y-TZP more reliable to increase its safety in clinical use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1