粘合剂粘接复合材料接头的进展:全面回顾

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Journal of Reinforced Plastics and Composites Pub Date : 2024-04-27 DOI:10.1177/07316844241248236
N. Karthikeyan, Jesuarockiam Naveen
{"title":"粘合剂粘接复合材料接头的进展:全面回顾","authors":"N. Karthikeyan, Jesuarockiam Naveen","doi":"10.1177/07316844241248236","DOIUrl":null,"url":null,"abstract":"Among the myriad joining techniques, the adhesive bonding technique is widely used to join complex large-scale composite structures because of its numerous advantages compared to traditional joining techniques. This article profusely analysed the various techniques for ameliorating the performance of composite joints, such as bonding methods (secondary bonding, co-bonding, co-curing, and multi-material bonding), surface modification techniques (plasma, laser surface treatment, surface grinding, etc.), additional reinforcement techniques (Z pin, wire mesh, nanofiller, etc), and different joint geometries (stepped joints, half-stepped joints, balanced joints, and scarf joints). Also, the effect of various adhesives and fabrication techniques on the static and dynamic performance of CFRP and GFRP-based joints was studied in detail. Moreover, this review addresses the finite element modelling and optimisation techniques on adhesively bonded joints. It has been observed that the bonding methods, surface modification to enhance the roughness of the adherend, addition of nanofillers, and variations in joint geometry greatly influence the shear strength, fracture toughness, fatigue, and vibration behaviour of FRP composite joints.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"71 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress in adhesive-bonded composite joints: A comprehensive review\",\"authors\":\"N. Karthikeyan, Jesuarockiam Naveen\",\"doi\":\"10.1177/07316844241248236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the myriad joining techniques, the adhesive bonding technique is widely used to join complex large-scale composite structures because of its numerous advantages compared to traditional joining techniques. This article profusely analysed the various techniques for ameliorating the performance of composite joints, such as bonding methods (secondary bonding, co-bonding, co-curing, and multi-material bonding), surface modification techniques (plasma, laser surface treatment, surface grinding, etc.), additional reinforcement techniques (Z pin, wire mesh, nanofiller, etc), and different joint geometries (stepped joints, half-stepped joints, balanced joints, and scarf joints). Also, the effect of various adhesives and fabrication techniques on the static and dynamic performance of CFRP and GFRP-based joints was studied in detail. Moreover, this review addresses the finite element modelling and optimisation techniques on adhesively bonded joints. It has been observed that the bonding methods, surface modification to enhance the roughness of the adherend, addition of nanofillers, and variations in joint geometry greatly influence the shear strength, fracture toughness, fatigue, and vibration behaviour of FRP composite joints.\",\"PeriodicalId\":16943,\"journal\":{\"name\":\"Journal of Reinforced Plastics and Composites\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reinforced Plastics and Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/07316844241248236\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241248236","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

在众多连接技术中,粘合剂连接技术因其与传统连接技术相比的诸多优势而被广泛用于连接复杂的大型复合材料结构。本文深入分析了改善复合材料连接性能的各种技术,如粘接方法(二次粘接、共粘接、共固化和多材料粘接)、表面改性技术(等离子体、激光表面处理、表面研磨等)、附加增强技术(Z 形销、金属丝网、纳米填料等)和不同的连接几何形状(阶梯连接、半阶梯连接、平衡连接和围巾连接)。此外,还详细研究了各种粘合剂和制造技术对基于 CFRP 和 GFRP 的接头的静态和动态性能的影响。此外,本综述还探讨了粘接接头的有限元建模和优化技术。研究发现,粘接方法、提高粘合剂粗糙度的表面改性、纳米填料的添加以及接头几何形状的变化会极大地影响玻璃钢复合材料接头的剪切强度、断裂韧性、疲劳和振动性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progress in adhesive-bonded composite joints: A comprehensive review
Among the myriad joining techniques, the adhesive bonding technique is widely used to join complex large-scale composite structures because of its numerous advantages compared to traditional joining techniques. This article profusely analysed the various techniques for ameliorating the performance of composite joints, such as bonding methods (secondary bonding, co-bonding, co-curing, and multi-material bonding), surface modification techniques (plasma, laser surface treatment, surface grinding, etc.), additional reinforcement techniques (Z pin, wire mesh, nanofiller, etc), and different joint geometries (stepped joints, half-stepped joints, balanced joints, and scarf joints). Also, the effect of various adhesives and fabrication techniques on the static and dynamic performance of CFRP and GFRP-based joints was studied in detail. Moreover, this review addresses the finite element modelling and optimisation techniques on adhesively bonded joints. It has been observed that the bonding methods, surface modification to enhance the roughness of the adherend, addition of nanofillers, and variations in joint geometry greatly influence the shear strength, fracture toughness, fatigue, and vibration behaviour of FRP composite joints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Reinforced Plastics and Composites
Journal of Reinforced Plastics and Composites 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.50%
发文量
82
审稿时长
1.3 months
期刊介绍: The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in: Constituent materials: matrix materials, reinforcements and coatings. Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference. Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition. Processing and fabrication: There is increased interest among materials engineers in cost-effective processing. Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation. Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials. "The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Effect of fly ash chemical components on epoxy mortar composite material performance Shear capacity of slender FRP-RC beams utilizing a hybrid ANN with the firefly optimizer Cooperative effect of hybrid polyethylene-basalt fibers on crack width control and mechanical properties in ECC Analysis of curing deformation for resin matrix composite T-shaped stiffened panel Deformation processes of polymer composites with stress concentrators under different reinforcement schemes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1