Giuliana Grasso, Valentina Onesto, Stefania Forciniti, Eliana D’Amone, Francesco Colella, Lara Pierantoni, Valeria Famà, Giuseppe Gigli, Rui L. Reis, Joaquim M. Oliveira, Loretta L. del Mercato
{"title":"用于氧传感的高灵敏度比率荧光纤维矩阵,具有微米级空间分辨率","authors":"Giuliana Grasso, Valentina Onesto, Stefania Forciniti, Eliana D’Amone, Francesco Colella, Lara Pierantoni, Valeria Famà, Giuseppe Gigli, Rui L. Reis, Joaquim M. Oliveira, Loretta L. del Mercato","doi":"10.1007/s42242-024-00277-3","DOIUrl":null,"url":null,"abstract":"<p>Oxygen (O<sub>2</sub>)-sensing matrices are promising tools for the live monitoring of extracellular O<sub>2</sub> consumption levels in long-term cell cultures. In this study, ratiometric O<sub>2</sub>-sensing membranes were prepared by electrospinning, an easy, low-cost, scalable, and robust method for fabricating nanofibers. Poly(ε-caprolactone) and poly(dimethyl)siloxane polymers were blended with tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride, which was used as the O<sub>2</sub>-sensing probe, and rhodamine B isothiocyanate, which was used as the reference dye. The functionalized scaffolds were morphologically characterized by scanning electron microscopy, and their physicochemical profiles were obtained by Fourier transform infrared spectroscopy, thermogravimetric analysis, and water contact angle measurement. The sensing capabilities were investigated by confocal laser scanning microscopy, performing photobleaching, reversibility, and calibration curve studies toward different dissolved O<sub>2</sub> (DO) concentrations. Electrospun sensing nanofibers showed a high response to changes in DO concentrations in the physiological-pathological range from 0.5 to 20% and good stability under ratiometric imaging. In addition, the sensing systems were highly biocompatible for cell growth promoting adhesiveness and growth of three cancer cell lines, namely metastatic melanoma cell line SK-MEL2, breast cancer cell line MCF-7, and pancreatic ductal adenocarcinoma cell line Panc-1, thus recreating a suitable biological environment in vitro<i>.</i> These O<sub>2</sub>-sensing biomaterials can potentially measure alterations in cell metabolism caused by changes in ambient O<sub>2</sub> content during drug testing/validation and tissue regeneration processes.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\n","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"73 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly sensitive ratiometric fluorescent fiber matrices for oxygen sensing with micrometer spatial resolution\",\"authors\":\"Giuliana Grasso, Valentina Onesto, Stefania Forciniti, Eliana D’Amone, Francesco Colella, Lara Pierantoni, Valeria Famà, Giuseppe Gigli, Rui L. Reis, Joaquim M. Oliveira, Loretta L. del Mercato\",\"doi\":\"10.1007/s42242-024-00277-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oxygen (O<sub>2</sub>)-sensing matrices are promising tools for the live monitoring of extracellular O<sub>2</sub> consumption levels in long-term cell cultures. In this study, ratiometric O<sub>2</sub>-sensing membranes were prepared by electrospinning, an easy, low-cost, scalable, and robust method for fabricating nanofibers. Poly(ε-caprolactone) and poly(dimethyl)siloxane polymers were blended with tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride, which was used as the O<sub>2</sub>-sensing probe, and rhodamine B isothiocyanate, which was used as the reference dye. The functionalized scaffolds were morphologically characterized by scanning electron microscopy, and their physicochemical profiles were obtained by Fourier transform infrared spectroscopy, thermogravimetric analysis, and water contact angle measurement. The sensing capabilities were investigated by confocal laser scanning microscopy, performing photobleaching, reversibility, and calibration curve studies toward different dissolved O<sub>2</sub> (DO) concentrations. Electrospun sensing nanofibers showed a high response to changes in DO concentrations in the physiological-pathological range from 0.5 to 20% and good stability under ratiometric imaging. In addition, the sensing systems were highly biocompatible for cell growth promoting adhesiveness and growth of three cancer cell lines, namely metastatic melanoma cell line SK-MEL2, breast cancer cell line MCF-7, and pancreatic ductal adenocarcinoma cell line Panc-1, thus recreating a suitable biological environment in vitro<i>.</i> These O<sub>2</sub>-sensing biomaterials can potentially measure alterations in cell metabolism caused by changes in ambient O<sub>2</sub> content during drug testing/validation and tissue regeneration processes.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphic abstract</h3>\\n\",\"PeriodicalId\":48627,\"journal\":{\"name\":\"Bio-Design and Manufacturing\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-Design and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42242-024-00277-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Design and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42242-024-00277-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Highly sensitive ratiometric fluorescent fiber matrices for oxygen sensing with micrometer spatial resolution
Oxygen (O2)-sensing matrices are promising tools for the live monitoring of extracellular O2 consumption levels in long-term cell cultures. In this study, ratiometric O2-sensing membranes were prepared by electrospinning, an easy, low-cost, scalable, and robust method for fabricating nanofibers. Poly(ε-caprolactone) and poly(dimethyl)siloxane polymers were blended with tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride, which was used as the O2-sensing probe, and rhodamine B isothiocyanate, which was used as the reference dye. The functionalized scaffolds were morphologically characterized by scanning electron microscopy, and their physicochemical profiles were obtained by Fourier transform infrared spectroscopy, thermogravimetric analysis, and water contact angle measurement. The sensing capabilities were investigated by confocal laser scanning microscopy, performing photobleaching, reversibility, and calibration curve studies toward different dissolved O2 (DO) concentrations. Electrospun sensing nanofibers showed a high response to changes in DO concentrations in the physiological-pathological range from 0.5 to 20% and good stability under ratiometric imaging. In addition, the sensing systems were highly biocompatible for cell growth promoting adhesiveness and growth of three cancer cell lines, namely metastatic melanoma cell line SK-MEL2, breast cancer cell line MCF-7, and pancreatic ductal adenocarcinoma cell line Panc-1, thus recreating a suitable biological environment in vitro. These O2-sensing biomaterials can potentially measure alterations in cell metabolism caused by changes in ambient O2 content during drug testing/validation and tissue regeneration processes.
期刊介绍:
Bio-Design and Manufacturing reports new research, new technology and new applications in the field of biomanufacturing, especially 3D bioprinting. Topics of Bio-Design and Manufacturing cover tissue engineering, regenerative medicine, mechanical devices from the perspectives of materials, biology, medicine and mechanical engineering, with a focus on manufacturing science and technology to fulfil the requirement of bio-design.