Sarah L. Stenton, Melanie C. O’Leary, Gabrielle Lemire, Grace E. VanNoy, Stephanie DiTroia, Vijay S. Ganesh, Emily Groopman, Emily O’Heir, Brian Mangilog, Ikeoluwa Osei-Owusu, Lynn S. Pais, Jillian Serrano, Moriel Singer-Berk, Ben Weisburd, Michael W. Wilson, Christina Austin-Tse, Marwa Abdelhakim, Azza Althagafi, Giulia Babbi, Riccardo Bellazzi, Samuele Bovo, Maria Giulia Carta, Rita Casadio, Pieter-Jan Coenen, Federica De Paoli, Matteo Floris, Manavalan Gajapathy, Robert Hoehndorf, Julius O. B. Jacobsen, Thomas Joseph, Akash Kamandula, Panagiotis Katsonis, Cyrielle Kint, Olivier Lichtarge, Ivan Limongelli, Yulan Lu, Paolo Magni, Tarun Karthik Kumar Mamidi, Pier Luigi Martelli, Marta Mulargia, Giovanna Nicora, Keith Nykamp, Vikas Pejaver, Yisu Peng, Thi Hong Cam Pham, Maurizio S. Podda, Aditya Rao, Ettore Rizzo, Vangala G. Saipradeep, Castrense Savojardo, Peter Schols, Yang Shen, Naveen Sivadasan, Damian Smedley, Dorian Soru, Rajgopal Srinivasan, Yuanfei Sun, Uma Sunderam, W..
{"title":"对罕见基因组项目中用于罕见病诊断的变异体优先排序方法进行严格评估","authors":"Sarah L. Stenton, Melanie C. O’Leary, Gabrielle Lemire, Grace E. VanNoy, Stephanie DiTroia, Vijay S. Ganesh, Emily Groopman, Emily O’Heir, Brian Mangilog, Ikeoluwa Osei-Owusu, Lynn S. Pais, Jillian Serrano, Moriel Singer-Berk, Ben Weisburd, Michael W. Wilson, Christina Austin-Tse, Marwa Abdelhakim, Azza Althagafi, Giulia Babbi, Riccardo Bellazzi, Samuele Bovo, Maria Giulia Carta, Rita Casadio, Pieter-Jan Coenen, Federica De Paoli, Matteo Floris, Manavalan Gajapathy, Robert Hoehndorf, Julius O. B. Jacobsen, Thomas Joseph, Akash Kamandula, Panagiotis Katsonis, Cyrielle Kint, Olivier Lichtarge, Ivan Limongelli, Yulan Lu, Paolo Magni, Tarun Karthik Kumar Mamidi, Pier Luigi Martelli, Marta Mulargia, Giovanna Nicora, Keith Nykamp, Vikas Pejaver, Yisu Peng, Thi Hong Cam Pham, Maurizio S. Podda, Aditya Rao, Ettore Rizzo, Vangala G. Saipradeep, Castrense Savojardo, Peter Schols, Yang Shen, Naveen Sivadasan, Damian Smedley, Dorian Soru, Rajgopal Srinivasan, Yuanfei Sun, Uma Sunderam, W..","doi":"10.1186/s40246-024-00604-w","DOIUrl":null,"url":null,"abstract":"A major obstacle faced by families with rare diseases is obtaining a genetic diagnosis. The average \"diagnostic odyssey\" lasts over five years and causal variants are identified in under 50%, even when capturing variants genome-wide. To aid in the interpretation and prioritization of the vast number of variants detected, computational methods are proliferating. Knowing which tools are most effective remains unclear. To evaluate the performance of computational methods, and to encourage innovation in method development, we designed a Critical Assessment of Genome Interpretation (CAGI) community challenge to place variant prioritization models head-to-head in a real-life clinical diagnostic setting. We utilized genome sequencing (GS) data from families sequenced in the Rare Genomes Project (RGP), a direct-to-participant research study on the utility of GS for rare disease diagnosis and gene discovery. Challenge predictors were provided with a dataset of variant calls and phenotype terms from 175 RGP individuals (65 families), including 35 solved training set families with causal variants specified, and 30 unlabeled test set families (14 solved, 16 unsolved). We tasked teams to identify causal variants in as many families as possible. Predictors submitted variant predictions with estimated probability of causal relationship (EPCR) values. Model performance was determined by two metrics, a weighted score based on the rank position of causal variants, and the maximum F-measure, based on precision and recall of causal variants across all EPCR values. Sixteen teams submitted predictions from 52 models, some with manual review incorporated. Top performers recalled causal variants in up to 13 of 14 solved families within the top 5 ranked variants. Newly discovered diagnostic variants were returned to two previously unsolved families following confirmatory RNA sequencing, and two novel disease gene candidates were entered into Matchmaker Exchange. In one example, RNA sequencing demonstrated aberrant splicing due to a deep intronic indel in ASNS, identified in trans with a frameshift variant in an unsolved proband with phenotypes consistent with asparagine synthetase deficiency. Model methodology and performance was highly variable. Models weighing call quality, allele frequency, predicted deleteriousness, segregation, and phenotype were effective in identifying causal variants, and models open to phenotype expansion and non-coding variants were able to capture more difficult diagnoses and discover new diagnoses. Overall, computational models can significantly aid variant prioritization. For use in diagnostics, detailed review and conservative assessment of prioritized variants against established criteria is needed.","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"33 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical assessment of variant prioritization methods for rare disease diagnosis within the rare genomes project\",\"authors\":\"Sarah L. Stenton, Melanie C. O’Leary, Gabrielle Lemire, Grace E. VanNoy, Stephanie DiTroia, Vijay S. Ganesh, Emily Groopman, Emily O’Heir, Brian Mangilog, Ikeoluwa Osei-Owusu, Lynn S. Pais, Jillian Serrano, Moriel Singer-Berk, Ben Weisburd, Michael W. Wilson, Christina Austin-Tse, Marwa Abdelhakim, Azza Althagafi, Giulia Babbi, Riccardo Bellazzi, Samuele Bovo, Maria Giulia Carta, Rita Casadio, Pieter-Jan Coenen, Federica De Paoli, Matteo Floris, Manavalan Gajapathy, Robert Hoehndorf, Julius O. B. Jacobsen, Thomas Joseph, Akash Kamandula, Panagiotis Katsonis, Cyrielle Kint, Olivier Lichtarge, Ivan Limongelli, Yulan Lu, Paolo Magni, Tarun Karthik Kumar Mamidi, Pier Luigi Martelli, Marta Mulargia, Giovanna Nicora, Keith Nykamp, Vikas Pejaver, Yisu Peng, Thi Hong Cam Pham, Maurizio S. Podda, Aditya Rao, Ettore Rizzo, Vangala G. Saipradeep, Castrense Savojardo, Peter Schols, Yang Shen, Naveen Sivadasan, Damian Smedley, Dorian Soru, Rajgopal Srinivasan, Yuanfei Sun, Uma Sunderam, W..\",\"doi\":\"10.1186/s40246-024-00604-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major obstacle faced by families with rare diseases is obtaining a genetic diagnosis. The average \\\"diagnostic odyssey\\\" lasts over five years and causal variants are identified in under 50%, even when capturing variants genome-wide. To aid in the interpretation and prioritization of the vast number of variants detected, computational methods are proliferating. Knowing which tools are most effective remains unclear. To evaluate the performance of computational methods, and to encourage innovation in method development, we designed a Critical Assessment of Genome Interpretation (CAGI) community challenge to place variant prioritization models head-to-head in a real-life clinical diagnostic setting. We utilized genome sequencing (GS) data from families sequenced in the Rare Genomes Project (RGP), a direct-to-participant research study on the utility of GS for rare disease diagnosis and gene discovery. Challenge predictors were provided with a dataset of variant calls and phenotype terms from 175 RGP individuals (65 families), including 35 solved training set families with causal variants specified, and 30 unlabeled test set families (14 solved, 16 unsolved). We tasked teams to identify causal variants in as many families as possible. Predictors submitted variant predictions with estimated probability of causal relationship (EPCR) values. Model performance was determined by two metrics, a weighted score based on the rank position of causal variants, and the maximum F-measure, based on precision and recall of causal variants across all EPCR values. Sixteen teams submitted predictions from 52 models, some with manual review incorporated. Top performers recalled causal variants in up to 13 of 14 solved families within the top 5 ranked variants. Newly discovered diagnostic variants were returned to two previously unsolved families following confirmatory RNA sequencing, and two novel disease gene candidates were entered into Matchmaker Exchange. In one example, RNA sequencing demonstrated aberrant splicing due to a deep intronic indel in ASNS, identified in trans with a frameshift variant in an unsolved proband with phenotypes consistent with asparagine synthetase deficiency. Model methodology and performance was highly variable. Models weighing call quality, allele frequency, predicted deleteriousness, segregation, and phenotype were effective in identifying causal variants, and models open to phenotype expansion and non-coding variants were able to capture more difficult diagnoses and discover new diagnoses. Overall, computational models can significantly aid variant prioritization. For use in diagnostics, detailed review and conservative assessment of prioritized variants against established criteria is needed.\",\"PeriodicalId\":13183,\"journal\":{\"name\":\"Human Genomics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Genomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40246-024-00604-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40246-024-00604-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Critical assessment of variant prioritization methods for rare disease diagnosis within the rare genomes project
A major obstacle faced by families with rare diseases is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years and causal variants are identified in under 50%, even when capturing variants genome-wide. To aid in the interpretation and prioritization of the vast number of variants detected, computational methods are proliferating. Knowing which tools are most effective remains unclear. To evaluate the performance of computational methods, and to encourage innovation in method development, we designed a Critical Assessment of Genome Interpretation (CAGI) community challenge to place variant prioritization models head-to-head in a real-life clinical diagnostic setting. We utilized genome sequencing (GS) data from families sequenced in the Rare Genomes Project (RGP), a direct-to-participant research study on the utility of GS for rare disease diagnosis and gene discovery. Challenge predictors were provided with a dataset of variant calls and phenotype terms from 175 RGP individuals (65 families), including 35 solved training set families with causal variants specified, and 30 unlabeled test set families (14 solved, 16 unsolved). We tasked teams to identify causal variants in as many families as possible. Predictors submitted variant predictions with estimated probability of causal relationship (EPCR) values. Model performance was determined by two metrics, a weighted score based on the rank position of causal variants, and the maximum F-measure, based on precision and recall of causal variants across all EPCR values. Sixteen teams submitted predictions from 52 models, some with manual review incorporated. Top performers recalled causal variants in up to 13 of 14 solved families within the top 5 ranked variants. Newly discovered diagnostic variants were returned to two previously unsolved families following confirmatory RNA sequencing, and two novel disease gene candidates were entered into Matchmaker Exchange. In one example, RNA sequencing demonstrated aberrant splicing due to a deep intronic indel in ASNS, identified in trans with a frameshift variant in an unsolved proband with phenotypes consistent with asparagine synthetase deficiency. Model methodology and performance was highly variable. Models weighing call quality, allele frequency, predicted deleteriousness, segregation, and phenotype were effective in identifying causal variants, and models open to phenotype expansion and non-coding variants were able to capture more difficult diagnoses and discover new diagnoses. Overall, computational models can significantly aid variant prioritization. For use in diagnostics, detailed review and conservative assessment of prioritized variants against established criteria is needed.
期刊介绍:
Human Genomics is a peer-reviewed, open access, online journal that focuses on the application of genomic analysis in all aspects of human health and disease, as well as genomic analysis of drug efficacy and safety, and comparative genomics.
Topics covered by the journal include, but are not limited to: pharmacogenomics, genome-wide association studies, genome-wide sequencing, exome sequencing, next-generation deep-sequencing, functional genomics, epigenomics, translational genomics, expression profiling, proteomics, bioinformatics, animal models, statistical genetics, genetic epidemiology, human population genetics and comparative genomics.