{"title":"从诊断评估中提取对教学有用信息的诊断面状态模型(DFSM)","authors":"Chun Wang","doi":"10.1007/s11336-024-09971-8","DOIUrl":null,"url":null,"abstract":"<p>Modern assessment demands, resulting from educational reform efforts, call for strengthening diagnostic testing capabilities to identify not only the understanding of expected learning goals but also related intermediate understandings that are steppingstones on pathways to learning goals. An accurate and nuanced way of interpreting assessment results will allow subsequent instructional actions to be targeted. An appropriate psychometric model is indispensable in this regard. In this study, we developed a new psychometric model, namely, the diagnostic facet status model (DFSM), which belongs to the general class of cognitive diagnostic models (CDM), but with two notable features: (1) it simultaneously models students’ target understanding (i.e., goal facet) and intermediate understanding (i.e., intermediate facet); and (2) it models every response option, rather than merely right or wrong responses, so that each incorrect response uniquely contributes to discovering students’ facet status. Given that some combination of goal and intermediate facets may be impossible due to facet hierarchical relationships, a regularized expectation–maximization algorithm (REM) was developed for model estimation. A log-penalty was imposed on the mixing proportions to encourage sparsity. As a result, those impermissible latent classes had estimated mixing proportions equal to 0. A heuristic algorithm was proposed to infer a facet map from the estimated permissible classes. A simulation study was conducted to evaluate the performance of REM to recover facet model parameters and to identify permissible latent classes. A real data analysis was provided to show the feasibility of the model.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":"52 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Diagnostic Facet Status Model (DFSM) for Extracting Instructionally Useful Information from Diagnostic Assessment\",\"authors\":\"Chun Wang\",\"doi\":\"10.1007/s11336-024-09971-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modern assessment demands, resulting from educational reform efforts, call for strengthening diagnostic testing capabilities to identify not only the understanding of expected learning goals but also related intermediate understandings that are steppingstones on pathways to learning goals. An accurate and nuanced way of interpreting assessment results will allow subsequent instructional actions to be targeted. An appropriate psychometric model is indispensable in this regard. In this study, we developed a new psychometric model, namely, the diagnostic facet status model (DFSM), which belongs to the general class of cognitive diagnostic models (CDM), but with two notable features: (1) it simultaneously models students’ target understanding (i.e., goal facet) and intermediate understanding (i.e., intermediate facet); and (2) it models every response option, rather than merely right or wrong responses, so that each incorrect response uniquely contributes to discovering students’ facet status. Given that some combination of goal and intermediate facets may be impossible due to facet hierarchical relationships, a regularized expectation–maximization algorithm (REM) was developed for model estimation. A log-penalty was imposed on the mixing proportions to encourage sparsity. As a result, those impermissible latent classes had estimated mixing proportions equal to 0. A heuristic algorithm was proposed to infer a facet map from the estimated permissible classes. A simulation study was conducted to evaluate the performance of REM to recover facet model parameters and to identify permissible latent classes. A real data analysis was provided to show the feasibility of the model.</p>\",\"PeriodicalId\":54534,\"journal\":{\"name\":\"Psychometrika\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychometrika\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s11336-024-09971-8\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-024-09971-8","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
教育改革带来的现代评估需求要求加强诊断测试能力,不仅要确定对预期学习目标 的理解,还要确定相关的中间理解,这些中间理解是通向学习目标的阶梯。对评估结果进行准确而细致的解释,可以使随后的教学行动有的放矢。在这方面,一个适当的心理测量模型是必不可少的。在本研究中,我们开发了一种新的心理测量模型,即诊断面状态模型(DFSM),它属于认知诊断模型(CDM)的一般类别,但有两个显著特点:(1) 它同时对学生的目标理解(即目标面)和中间理解(即中间面)进行建模;(2) 它对每一个回答选项进行建模,而不仅仅是对或错的回答,因此每一个错误的回答都会对发现学生的面状态做出独特的贡献。由于面的层次关系,目标面和中间面的某些组合可能是不可能的,因此我们开发了一种正则化期望最大化算法(REM)来进行模型估计。为鼓励稀疏性,对混合比例施加了对数惩罚。因此,不允许的潜类的估计混合比例等于 0。我们进行了一项模拟研究,以评估 REM 在恢复面模型参数和识别允许潜类方面的性能。提供的真实数据分析显示了该模型的可行性。
A Diagnostic Facet Status Model (DFSM) for Extracting Instructionally Useful Information from Diagnostic Assessment
Modern assessment demands, resulting from educational reform efforts, call for strengthening diagnostic testing capabilities to identify not only the understanding of expected learning goals but also related intermediate understandings that are steppingstones on pathways to learning goals. An accurate and nuanced way of interpreting assessment results will allow subsequent instructional actions to be targeted. An appropriate psychometric model is indispensable in this regard. In this study, we developed a new psychometric model, namely, the diagnostic facet status model (DFSM), which belongs to the general class of cognitive diagnostic models (CDM), but with two notable features: (1) it simultaneously models students’ target understanding (i.e., goal facet) and intermediate understanding (i.e., intermediate facet); and (2) it models every response option, rather than merely right or wrong responses, so that each incorrect response uniquely contributes to discovering students’ facet status. Given that some combination of goal and intermediate facets may be impossible due to facet hierarchical relationships, a regularized expectation–maximization algorithm (REM) was developed for model estimation. A log-penalty was imposed on the mixing proportions to encourage sparsity. As a result, those impermissible latent classes had estimated mixing proportions equal to 0. A heuristic algorithm was proposed to infer a facet map from the estimated permissible classes. A simulation study was conducted to evaluate the performance of REM to recover facet model parameters and to identify permissible latent classes. A real data analysis was provided to show the feasibility of the model.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.