{"title":"用于检查和维护规划的无信念 DRL 和 MCTS 研究","authors":"Daniel Koutas, Elizabeth Bismut, Daniel Straub","doi":"10.1186/s43065-024-00098-9","DOIUrl":null,"url":null,"abstract":"We propose a novel Deep Reinforcement Learning (DRL) architecture for sequential decision processes under uncertainty, as encountered in inspection and maintenance (I &M) planning. Unlike other DRL algorithms for (I &M) planning, the proposed +RQN architecture dispenses with computing the belief state and directly handles erroneous observations instead. We apply the algorithm to a basic I &M planning problem for a one-component system subject to deterioration. In addition, we investigate the performance of Monte Carlo tree search for the I &M problem and compare it to the +RQN. The comparison includes a statistical analysis of the two methods’ resulting policies, as well as their visualization in the belief space.","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investigation of belief-free DRL and MCTS for inspection and maintenance planning\",\"authors\":\"Daniel Koutas, Elizabeth Bismut, Daniel Straub\",\"doi\":\"10.1186/s43065-024-00098-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel Deep Reinforcement Learning (DRL) architecture for sequential decision processes under uncertainty, as encountered in inspection and maintenance (I &M) planning. Unlike other DRL algorithms for (I &M) planning, the proposed +RQN architecture dispenses with computing the belief state and directly handles erroneous observations instead. We apply the algorithm to a basic I &M planning problem for a one-component system subject to deterioration. In addition, we investigate the performance of Monte Carlo tree search for the I &M problem and compare it to the +RQN. The comparison includes a statistical analysis of the two methods’ resulting policies, as well as their visualization in the belief space.\",\"PeriodicalId\":73793,\"journal\":{\"name\":\"Journal of infrastructure preservation and resilience\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of infrastructure preservation and resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43065-024-00098-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of infrastructure preservation and resilience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43065-024-00098-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了一种新颖的深度强化学习(DRL)架构,用于不确定情况下的顺序决策过程,如检查和维护(I &M)规划中遇到的情况。与其他用于(I &M)规划的 DRL 算法不同,所提出的 +RQN 架构无需计算信念状态,而是直接处理错误观测。我们将该算法应用于受劣化影响的单组件系统的基本 I &M 规划问题。此外,我们还研究了蒙特卡洛树搜索在 I & M 问题上的性能,并将其与 +RQN 进行了比较。比较内容包括对两种方法得出的策略进行统计分析,以及它们在信念空间中的可视化。
An investigation of belief-free DRL and MCTS for inspection and maintenance planning
We propose a novel Deep Reinforcement Learning (DRL) architecture for sequential decision processes under uncertainty, as encountered in inspection and maintenance (I &M) planning. Unlike other DRL algorithms for (I &M) planning, the proposed +RQN architecture dispenses with computing the belief state and directly handles erroneous observations instead. We apply the algorithm to a basic I &M planning problem for a one-component system subject to deterioration. In addition, we investigate the performance of Monte Carlo tree search for the I &M problem and compare it to the +RQN. The comparison includes a statistical analysis of the two methods’ resulting policies, as well as their visualization in the belief space.