Chuang Wang, Chupeng Su, Baozheng Sun, Gang Chen, Longhan Xie
{"title":"针对半结构化环境中机器人装配的一次模仿学习与扩展残差学习","authors":"Chuang Wang, Chupeng Su, Baozheng Sun, Gang Chen, Longhan Xie","doi":"10.3389/fnbot.2024.1355170","DOIUrl":null,"url":null,"abstract":"IntroductionRobotic assembly tasks require precise manipulation and coordination, often necessitating advanced learning techniques to achieve efficient and effective performance. While residual reinforcement learning with a base policy has shown promise in this domain, existing base policy approaches often rely on hand-designed full-state features and policies or extensive demonstrations, limiting their applicability in semi-structured environments.MethodsIn this study, we propose an innovative Object-Embodiment-Centric Imitation and Residual Reinforcement Learning (OEC-IRRL) approach that leverages an object-embodiment-centric (OEC) task representation to integrate vision models with imitation and residual learning. By utilizing a single demonstration and minimizing interactions with the environment, our method aims to enhance learning efficiency and effectiveness. The proposed method involves three key steps: creating an object-embodiment-centric task representation, employing imitation learning for a base policy using via-point movement primitives for generalization to different settings, and utilizing residual RL for uncertainty-aware policy refinement during the assembly phase.ResultsThrough a series of comprehensive experiments, we investigate the impact of the OEC task representation on base and residual policy learning and demonstrate the effectiveness of the method in semi-structured environments. Our results indicate that the approach, requiring only a single demonstration and less than 1.2 h of interaction, improves success rates by 46% and reduces assembly time by 25%.DiscussionThis research presents a promising avenue for robotic assembly tasks, providing a viable solution without the need for specialized expertise or custom fixtures.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"36 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended residual learning with one-shot imitation learning for robotic assembly in semi-structured environment\",\"authors\":\"Chuang Wang, Chupeng Su, Baozheng Sun, Gang Chen, Longhan Xie\",\"doi\":\"10.3389/fnbot.2024.1355170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IntroductionRobotic assembly tasks require precise manipulation and coordination, often necessitating advanced learning techniques to achieve efficient and effective performance. While residual reinforcement learning with a base policy has shown promise in this domain, existing base policy approaches often rely on hand-designed full-state features and policies or extensive demonstrations, limiting their applicability in semi-structured environments.MethodsIn this study, we propose an innovative Object-Embodiment-Centric Imitation and Residual Reinforcement Learning (OEC-IRRL) approach that leverages an object-embodiment-centric (OEC) task representation to integrate vision models with imitation and residual learning. By utilizing a single demonstration and minimizing interactions with the environment, our method aims to enhance learning efficiency and effectiveness. The proposed method involves three key steps: creating an object-embodiment-centric task representation, employing imitation learning for a base policy using via-point movement primitives for generalization to different settings, and utilizing residual RL for uncertainty-aware policy refinement during the assembly phase.ResultsThrough a series of comprehensive experiments, we investigate the impact of the OEC task representation on base and residual policy learning and demonstrate the effectiveness of the method in semi-structured environments. Our results indicate that the approach, requiring only a single demonstration and less than 1.2 h of interaction, improves success rates by 46% and reduces assembly time by 25%.DiscussionThis research presents a promising avenue for robotic assembly tasks, providing a viable solution without the need for specialized expertise or custom fixtures.\",\"PeriodicalId\":12628,\"journal\":{\"name\":\"Frontiers in Neurorobotics\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurorobotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2024.1355170\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1355170","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Extended residual learning with one-shot imitation learning for robotic assembly in semi-structured environment
IntroductionRobotic assembly tasks require precise manipulation and coordination, often necessitating advanced learning techniques to achieve efficient and effective performance. While residual reinforcement learning with a base policy has shown promise in this domain, existing base policy approaches often rely on hand-designed full-state features and policies or extensive demonstrations, limiting their applicability in semi-structured environments.MethodsIn this study, we propose an innovative Object-Embodiment-Centric Imitation and Residual Reinforcement Learning (OEC-IRRL) approach that leverages an object-embodiment-centric (OEC) task representation to integrate vision models with imitation and residual learning. By utilizing a single demonstration and minimizing interactions with the environment, our method aims to enhance learning efficiency and effectiveness. The proposed method involves three key steps: creating an object-embodiment-centric task representation, employing imitation learning for a base policy using via-point movement primitives for generalization to different settings, and utilizing residual RL for uncertainty-aware policy refinement during the assembly phase.ResultsThrough a series of comprehensive experiments, we investigate the impact of the OEC task representation on base and residual policy learning and demonstrate the effectiveness of the method in semi-structured environments. Our results indicate that the approach, requiring only a single demonstration and less than 1.2 h of interaction, improves success rates by 46% and reduces assembly time by 25%.DiscussionThis research presents a promising avenue for robotic assembly tasks, providing a viable solution without the need for specialized expertise or custom fixtures.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.