{"title":"使用局部还原基方法对修剪多补丁等几何基尔霍夫-洛夫壳进行快速参数分析","authors":"Margarita Chasapi, Pablo Antolin, Annalisa Buffa","doi":"10.1007/s00366-024-01980-6","DOIUrl":null,"url":null,"abstract":"<p>This contribution presents a model order reduction framework for real-time efficient solution of trimmed, multi-patch isogeometric Kirchhoff-Love shells. In several scenarios, such as design and shape optimization, multiple simulations need to be performed for a given set of physical or geometrical parameters. This step can be computationally expensive in particular for real world, practical applications. We are interested in geometrical parameters and take advantage of the flexibility of splines in representing complex geometries. In this case, the operators are geometry-dependent and generally depend on the parameters in a non-affine way. Moreover, the solutions obtained from trimmed domains may vary highly with respect to different values of the parameters. Therefore, we employ a local reduced basis method based on clustering techniques and the Discrete Empirical Interpolation Method to construct affine approximations and efficient reduced order models. In addition, we discuss the application of the reduction strategy to parametric shape optimization. Finally, we demonstrate the performance of the proposed framework to parameterized Kirchhoff-Love shells through benchmark tests on trimmed, multi-patch meshes including a complex geometry. The proposed approach is accurate and achieves a significant reduction of the online computational cost in comparison to the standard reduced basis method.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast parametric analysis of trimmed multi-patch isogeometric Kirchhoff-Love shells using a local reduced basis method\",\"authors\":\"Margarita Chasapi, Pablo Antolin, Annalisa Buffa\",\"doi\":\"10.1007/s00366-024-01980-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This contribution presents a model order reduction framework for real-time efficient solution of trimmed, multi-patch isogeometric Kirchhoff-Love shells. In several scenarios, such as design and shape optimization, multiple simulations need to be performed for a given set of physical or geometrical parameters. This step can be computationally expensive in particular for real world, practical applications. We are interested in geometrical parameters and take advantage of the flexibility of splines in representing complex geometries. In this case, the operators are geometry-dependent and generally depend on the parameters in a non-affine way. Moreover, the solutions obtained from trimmed domains may vary highly with respect to different values of the parameters. Therefore, we employ a local reduced basis method based on clustering techniques and the Discrete Empirical Interpolation Method to construct affine approximations and efficient reduced order models. In addition, we discuss the application of the reduction strategy to parametric shape optimization. Finally, we demonstrate the performance of the proposed framework to parameterized Kirchhoff-Love shells through benchmark tests on trimmed, multi-patch meshes including a complex geometry. The proposed approach is accurate and achieves a significant reduction of the online computational cost in comparison to the standard reduced basis method.</p>\",\"PeriodicalId\":11696,\"journal\":{\"name\":\"Engineering with Computers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering with Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00366-024-01980-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-01980-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Fast parametric analysis of trimmed multi-patch isogeometric Kirchhoff-Love shells using a local reduced basis method
This contribution presents a model order reduction framework for real-time efficient solution of trimmed, multi-patch isogeometric Kirchhoff-Love shells. In several scenarios, such as design and shape optimization, multiple simulations need to be performed for a given set of physical or geometrical parameters. This step can be computationally expensive in particular for real world, practical applications. We are interested in geometrical parameters and take advantage of the flexibility of splines in representing complex geometries. In this case, the operators are geometry-dependent and generally depend on the parameters in a non-affine way. Moreover, the solutions obtained from trimmed domains may vary highly with respect to different values of the parameters. Therefore, we employ a local reduced basis method based on clustering techniques and the Discrete Empirical Interpolation Method to construct affine approximations and efficient reduced order models. In addition, we discuss the application of the reduction strategy to parametric shape optimization. Finally, we demonstrate the performance of the proposed framework to parameterized Kirchhoff-Love shells through benchmark tests on trimmed, multi-patch meshes including a complex geometry. The proposed approach is accurate and achieves a significant reduction of the online computational cost in comparison to the standard reduced basis method.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.