Kunpeng Pan, Yang Lyu, Feisheng Yang, Zheng Tan, Quan Pan
{"title":"无人飞行器的攻击检测与安全控制,抵御对预期轨迹的攻击","authors":"Kunpeng Pan, Yang Lyu, Feisheng Yang, Zheng Tan, Quan Pan","doi":"10.1007/s10846-024-02086-3","DOIUrl":null,"url":null,"abstract":"<p>The paper presents a security control scheme for unmanned aerial vehicles (UAVs) against desired trajectory attacks. The key components of the proposed scheme are the attack detector, attack estimator, and integral sliding mode security controller (ISMSC). We focus on malicious tampering of the desired trajectory sent by the ground control station (GCS) to the UAV by attackers. Firstly, we model attacks by analyzing the characteristics of desired trajectory attacks. Secondly, an integrated attack detection scheme based on an unknown input observer (UIO) and an interval observer is presented. Subsequently, a robust adaptive observer (RAO) is employed to compensate for the impact of attacks on the control system. Thirdly, an ISMSC with an attack compensation mechanism is established. Finally, simulation results are provided to verify the effectiveness of the proposed scheme. The proposed detection scheme can not only detect desired trajectory attacks but also distinguish them from abrupt unknown disturbances (AUDs). By utilizing ISMSC method, UAVs under desired trajectory attacks can fly safely. The proposed comprehensive framework of detection, estimation and compensation provides a theoretical basis for ensuring cyber security in UAVs.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"34 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attack Detection and Security Control for UAVs Against Attacks on Desired Trajectory\",\"authors\":\"Kunpeng Pan, Yang Lyu, Feisheng Yang, Zheng Tan, Quan Pan\",\"doi\":\"10.1007/s10846-024-02086-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents a security control scheme for unmanned aerial vehicles (UAVs) against desired trajectory attacks. The key components of the proposed scheme are the attack detector, attack estimator, and integral sliding mode security controller (ISMSC). We focus on malicious tampering of the desired trajectory sent by the ground control station (GCS) to the UAV by attackers. Firstly, we model attacks by analyzing the characteristics of desired trajectory attacks. Secondly, an integrated attack detection scheme based on an unknown input observer (UIO) and an interval observer is presented. Subsequently, a robust adaptive observer (RAO) is employed to compensate for the impact of attacks on the control system. Thirdly, an ISMSC with an attack compensation mechanism is established. Finally, simulation results are provided to verify the effectiveness of the proposed scheme. The proposed detection scheme can not only detect desired trajectory attacks but also distinguish them from abrupt unknown disturbances (AUDs). By utilizing ISMSC method, UAVs under desired trajectory attacks can fly safely. The proposed comprehensive framework of detection, estimation and compensation provides a theoretical basis for ensuring cyber security in UAVs.</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-024-02086-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02086-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Attack Detection and Security Control for UAVs Against Attacks on Desired Trajectory
The paper presents a security control scheme for unmanned aerial vehicles (UAVs) against desired trajectory attacks. The key components of the proposed scheme are the attack detector, attack estimator, and integral sliding mode security controller (ISMSC). We focus on malicious tampering of the desired trajectory sent by the ground control station (GCS) to the UAV by attackers. Firstly, we model attacks by analyzing the characteristics of desired trajectory attacks. Secondly, an integrated attack detection scheme based on an unknown input observer (UIO) and an interval observer is presented. Subsequently, a robust adaptive observer (RAO) is employed to compensate for the impact of attacks on the control system. Thirdly, an ISMSC with an attack compensation mechanism is established. Finally, simulation results are provided to verify the effectiveness of the proposed scheme. The proposed detection scheme can not only detect desired trajectory attacks but also distinguish them from abrupt unknown disturbances (AUDs). By utilizing ISMSC method, UAVs under desired trajectory attacks can fly safely. The proposed comprehensive framework of detection, estimation and compensation provides a theoretical basis for ensuring cyber security in UAVs.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).