Konduru Ashok Kumar Raju , Amit Biswas , Amit Kumar Singh , Yogendra Mahton , Partha Saha
{"title":"增强 58S 生物玻璃集成 TiO2 纳米管阵列的耐腐蚀性能","authors":"Konduru Ashok Kumar Raju , Amit Biswas , Amit Kumar Singh , Yogendra Mahton , Partha Saha","doi":"10.1016/j.nxnano.2024.100070","DOIUrl":null,"url":null,"abstract":"<div><p>Titanium and its alloys are widely used for orthopedic implant fabrication. The interfacial reaction between titanium and living tissue is controlled by the oxide film formed on the surface of the titanium substrate. In this work, an anodic oxidation technique was explored to create the self-organized TiO<sub>2</sub> nanotube array by maintaining a constant voltage of 30 V for 4 h using ethylene glycol (80%), ammonium fluoride (0.3 wt%), and the distilled water adjusted the remaining balance (19.7%). The constructed nanotube array has a diameter of 100 ± 12 nm. Further, a 58 S bioglass was synthesized using a sol-gel technique and integrated into the TiO<sub>2</sub> nanotubular array. The samples were analyzed in terms of their topography and electrochemical response. The 58 S bioglass-integrated nanotubular surface effectively improves resistance to electrochemical corrosion.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000317/pdfft?md5=a80d4c479d990da3863cbfc819de5758&pid=1-s2.0-S2949829524000317-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced corrosion resistance of 58S bioglass integrated TiO2 nanotubular arrays\",\"authors\":\"Konduru Ashok Kumar Raju , Amit Biswas , Amit Kumar Singh , Yogendra Mahton , Partha Saha\",\"doi\":\"10.1016/j.nxnano.2024.100070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Titanium and its alloys are widely used for orthopedic implant fabrication. The interfacial reaction between titanium and living tissue is controlled by the oxide film formed on the surface of the titanium substrate. In this work, an anodic oxidation technique was explored to create the self-organized TiO<sub>2</sub> nanotube array by maintaining a constant voltage of 30 V for 4 h using ethylene glycol (80%), ammonium fluoride (0.3 wt%), and the distilled water adjusted the remaining balance (19.7%). The constructed nanotube array has a diameter of 100 ± 12 nm. Further, a 58 S bioglass was synthesized using a sol-gel technique and integrated into the TiO<sub>2</sub> nanotubular array. The samples were analyzed in terms of their topography and electrochemical response. The 58 S bioglass-integrated nanotubular surface effectively improves resistance to electrochemical corrosion.</p></div>\",\"PeriodicalId\":100959,\"journal\":{\"name\":\"Next Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949829524000317/pdfft?md5=a80d4c479d990da3863cbfc819de5758&pid=1-s2.0-S2949829524000317-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949829524000317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829524000317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
钛及其合金被广泛用于骨科植入物的制造。钛与活体组织之间的界面反应受钛基底表面形成的氧化膜控制。在这项工作中,我们探索了一种阳极氧化技术,利用乙二醇(80%)、氟化铵(0.3 wt%)和蒸馏水调节余量(19.7%),在 30 V 的恒定电压下保持 4 小时,以创建自组织 TiO2 纳米管阵列。构建的纳米管阵列直径为 100 ± 12 nm。此外,还采用溶胶-凝胶技术合成了 58 S 生物玻璃,并将其整合到 TiO2 纳米管阵列中。对样品的形貌和电化学响应进行了分析。整合了 58 S 生物玻璃的纳米管表面有效地提高了抗电化学腐蚀的能力。
Enhanced corrosion resistance of 58S bioglass integrated TiO2 nanotubular arrays
Titanium and its alloys are widely used for orthopedic implant fabrication. The interfacial reaction between titanium and living tissue is controlled by the oxide film formed on the surface of the titanium substrate. In this work, an anodic oxidation technique was explored to create the self-organized TiO2 nanotube array by maintaining a constant voltage of 30 V for 4 h using ethylene glycol (80%), ammonium fluoride (0.3 wt%), and the distilled water adjusted the remaining balance (19.7%). The constructed nanotube array has a diameter of 100 ± 12 nm. Further, a 58 S bioglass was synthesized using a sol-gel technique and integrated into the TiO2 nanotubular array. The samples were analyzed in terms of their topography and electrochemical response. The 58 S bioglass-integrated nanotubular surface effectively improves resistance to electrochemical corrosion.