Zhibin Shuai;Zheng Hu;Jiangtao Gai;Yijie Chen;Jicheng Chen;Hui Zhang;Fei-Yue Wang
{"title":"开放式地形野外车队的元数据智能:利用并行智能和边缘计算","authors":"Zhibin Shuai;Zheng Hu;Jiangtao Gai;Yijie Chen;Jicheng Chen;Hui Zhang;Fei-Yue Wang","doi":"10.1109/TIV.2024.3376461","DOIUrl":null,"url":null,"abstract":"Open-terrain field vehicle (OTFV) fleets, including mining trucks, construction machinery, and agricultural machinery, often encounter significantly more intricate scenarios and unique challenges than road vehicles. Enhancing the intelligence level of OTFV fleets can significantly enhance their operational effectiveness and improve energy efficiency. This perspective paper introduces a metaverse-enabled framework to improve the intelligence levels of OTFV fleets. The metaverse-enabled framework consists of the parallel intelligence-based vehicle fleet control and edge computing-based vehicle dynamics control levels. We first delve into the framework's specifics, covering open-terrain field metaverse, parallel intelligence, edge computing, and human-vehicle cooperation. We further discuss critical issues such as artificial general intelligence (AGI) enabled large control models, vehicle teleoperation, communication privacy, and edge scenario engineering. Additionally, we provide a detailed account of edge computing and integrated domain control within the vehicle dynamics control level, illustrating the interactions among human drivers, domain controllers, vehicle systems and open-terrain field metaverse. Ultimately, the proposed framework can potentially empower intelligence to OTFV fleets and other equipment clusters with complicated system compositions and challenging missions in complex environments.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"9 2","pages":"3111-3116"},"PeriodicalIF":14.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metaverse-Enabled Intelligence for Open-Terrain Field Vehicle Fleets: Leveraging Parallel Intelligence and Edge Computing\",\"authors\":\"Zhibin Shuai;Zheng Hu;Jiangtao Gai;Yijie Chen;Jicheng Chen;Hui Zhang;Fei-Yue Wang\",\"doi\":\"10.1109/TIV.2024.3376461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Open-terrain field vehicle (OTFV) fleets, including mining trucks, construction machinery, and agricultural machinery, often encounter significantly more intricate scenarios and unique challenges than road vehicles. Enhancing the intelligence level of OTFV fleets can significantly enhance their operational effectiveness and improve energy efficiency. This perspective paper introduces a metaverse-enabled framework to improve the intelligence levels of OTFV fleets. The metaverse-enabled framework consists of the parallel intelligence-based vehicle fleet control and edge computing-based vehicle dynamics control levels. We first delve into the framework's specifics, covering open-terrain field metaverse, parallel intelligence, edge computing, and human-vehicle cooperation. We further discuss critical issues such as artificial general intelligence (AGI) enabled large control models, vehicle teleoperation, communication privacy, and edge scenario engineering. Additionally, we provide a detailed account of edge computing and integrated domain control within the vehicle dynamics control level, illustrating the interactions among human drivers, domain controllers, vehicle systems and open-terrain field metaverse. Ultimately, the proposed framework can potentially empower intelligence to OTFV fleets and other equipment clusters with complicated system compositions and challenging missions in complex environments.\",\"PeriodicalId\":36532,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Vehicles\",\"volume\":\"9 2\",\"pages\":\"3111-3116\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10468631/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10468631/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Metaverse-Enabled Intelligence for Open-Terrain Field Vehicle Fleets: Leveraging Parallel Intelligence and Edge Computing
Open-terrain field vehicle (OTFV) fleets, including mining trucks, construction machinery, and agricultural machinery, often encounter significantly more intricate scenarios and unique challenges than road vehicles. Enhancing the intelligence level of OTFV fleets can significantly enhance their operational effectiveness and improve energy efficiency. This perspective paper introduces a metaverse-enabled framework to improve the intelligence levels of OTFV fleets. The metaverse-enabled framework consists of the parallel intelligence-based vehicle fleet control and edge computing-based vehicle dynamics control levels. We first delve into the framework's specifics, covering open-terrain field metaverse, parallel intelligence, edge computing, and human-vehicle cooperation. We further discuss critical issues such as artificial general intelligence (AGI) enabled large control models, vehicle teleoperation, communication privacy, and edge scenario engineering. Additionally, we provide a detailed account of edge computing and integrated domain control within the vehicle dynamics control level, illustrating the interactions among human drivers, domain controllers, vehicle systems and open-terrain field metaverse. Ultimately, the proposed framework can potentially empower intelligence to OTFV fleets and other equipment clusters with complicated system compositions and challenging missions in complex environments.
期刊介绍:
The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges.
Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.