{"title":"利用格拉米安在岩石物理和结构领域对重力和磁力数据进行自适应分区的联合反演方法","authors":"Tingyi Wang, Guoqing Ma, Qingfa Meng, Taihan Wang, Zhexin Jiang","doi":"10.1007/s10712-024-09832-0","DOIUrl":null,"url":null,"abstract":"<div><p>Different observation data are utilized to obtain a unified geophysical model based on the correlations of underground geological bodies in joint inversions. By specifying a type of Gramian constraints, Gramian as a coupling term can link geophysical models through relationships of physical properties or structural similarities. Considering the complex relationships of physical properties of underground geological bodies, we proposed an adaptive zoning method to automatically divide the whole inversion area into subregions with different relationships of physical properties and to determine the number and range of subregions that utilized correlation between geophysical data before joint inversions. On this basis, we considered the use of a combination of Gramian coupling terms rather than one term to link petrophysical and structural domains during joint inversions. Synthetic tests showed that the algorithm is capable of having a robust estimate of the spatial distribution and relationships between density and magnetization intensity of geological bodies. The idea was also applied to the ore concentration area in the middle and lower reaches of the Yangtze River to obtain the three-dimensional (3-D) distribution model of magnetite-bearing rocks within 5 km underground, which corresponds well with the existing shallow ore sites and demonstrates the existence of available deep resources in the study area.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 4","pages":"1291 - 1330"},"PeriodicalIF":4.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Inversion Method of Gravity and Magnetic Data with Adaptive Zoning Using Gramian in Both Petrophysical and Structural Domains\",\"authors\":\"Tingyi Wang, Guoqing Ma, Qingfa Meng, Taihan Wang, Zhexin Jiang\",\"doi\":\"10.1007/s10712-024-09832-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Different observation data are utilized to obtain a unified geophysical model based on the correlations of underground geological bodies in joint inversions. By specifying a type of Gramian constraints, Gramian as a coupling term can link geophysical models through relationships of physical properties or structural similarities. Considering the complex relationships of physical properties of underground geological bodies, we proposed an adaptive zoning method to automatically divide the whole inversion area into subregions with different relationships of physical properties and to determine the number and range of subregions that utilized correlation between geophysical data before joint inversions. On this basis, we considered the use of a combination of Gramian coupling terms rather than one term to link petrophysical and structural domains during joint inversions. Synthetic tests showed that the algorithm is capable of having a robust estimate of the spatial distribution and relationships between density and magnetization intensity of geological bodies. The idea was also applied to the ore concentration area in the middle and lower reaches of the Yangtze River to obtain the three-dimensional (3-D) distribution model of magnetite-bearing rocks within 5 km underground, which corresponds well with the existing shallow ore sites and demonstrates the existence of available deep resources in the study area.</p></div>\",\"PeriodicalId\":49458,\"journal\":{\"name\":\"Surveys in Geophysics\",\"volume\":\"45 4\",\"pages\":\"1291 - 1330\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surveys in Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10712-024-09832-0\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surveys in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10712-024-09832-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Joint Inversion Method of Gravity and Magnetic Data with Adaptive Zoning Using Gramian in Both Petrophysical and Structural Domains
Different observation data are utilized to obtain a unified geophysical model based on the correlations of underground geological bodies in joint inversions. By specifying a type of Gramian constraints, Gramian as a coupling term can link geophysical models through relationships of physical properties or structural similarities. Considering the complex relationships of physical properties of underground geological bodies, we proposed an adaptive zoning method to automatically divide the whole inversion area into subregions with different relationships of physical properties and to determine the number and range of subregions that utilized correlation between geophysical data before joint inversions. On this basis, we considered the use of a combination of Gramian coupling terms rather than one term to link petrophysical and structural domains during joint inversions. Synthetic tests showed that the algorithm is capable of having a robust estimate of the spatial distribution and relationships between density and magnetization intensity of geological bodies. The idea was also applied to the ore concentration area in the middle and lower reaches of the Yangtze River to obtain the three-dimensional (3-D) distribution model of magnetite-bearing rocks within 5 km underground, which corresponds well with the existing shallow ore sites and demonstrates the existence of available deep resources in the study area.
期刊介绍:
Surveys in Geophysics publishes refereed review articles on the physical, chemical and biological processes occurring within the Earth, on its surface, in its atmosphere and in the near-Earth space environment, including relations with other bodies in the solar system. Observations, their interpretation, theory and modelling are covered in papers dealing with any of the Earth and space sciences.