退化松林植被恢复过程中土壤微生物对土壤肥力的响应

IF 3.6 2区 农林科学 Q2 ENVIRONMENTAL SCIENCES Land Degradation & Development Pub Date : 2024-04-30 DOI:10.1002/ldr.5147
Xiaopeng Wang, He Wang, Man Zhou, Zuopin Zhuo, Gengen Lin, Yue Zhang, Fangshi Jiang, Yanhe Huang, Jinshi Lin
{"title":"退化松林植被恢复过程中土壤微生物对土壤肥力的响应","authors":"Xiaopeng Wang,&nbsp;He Wang,&nbsp;Man Zhou,&nbsp;Zuopin Zhuo,&nbsp;Gengen Lin,&nbsp;Yue Zhang,&nbsp;Fangshi Jiang,&nbsp;Yanhe Huang,&nbsp;Jinshi Lin","doi":"10.1002/ldr.5147","DOIUrl":null,"url":null,"abstract":"<p>The rehabilitation of diverse and three-dimensional forest vegetation patterns is crucial for preventing forest degradation and improving soil fertility. However, the relationship between soil microbial community and soil fertility was not clear. To accurately assess the capability of vegetation restoration measures on the real impact on degraded soil ecosystems. We selected three vegetation rehabilitation models of degraded <i>Pinus massoniana</i> forests in typical soil erosion areas in China as the research objects, with untreated bare land as the control. All three vegetation construction patterns increased the abundance and diversity of soil bacteria and fungi, thereby enhancing the stability of the soil ecosystem. Additionally, the vegetation rehabilitation models also altered the community structure of soil bacteria and fungi in the degraded <i>P. massoniana</i> forests. The pH and soil fertility index (IFI) were the main factors leading to variations in the community structure of the soil bacteria and fungi. Among them, the grass-planting model showed a significantly greater improvement in the soil fertility of degraded <i>P. massoniana</i> forests than the shrub-planting and arbor-planting models. Furthermore, Ascomycota, Basidiomycota, and Glomeromycota exhibited the most significant response to IFI, indicating their potential as indicator microorganisms for soil fertility changes. The improvement in soil fertility in degraded <i>P. massoniana</i> forests was influenced primarily by the increase in urease activity (S-UE) according to the vegetation rehabilitation models (84.20%, <i>p</i> = 0.000). In conclusion, the grass-planting system effectively improved the soil ecosystem quality of degraded <i>P. massoniana</i> forests in southern erosion-prone areas of China and was suitable for further application.</p>","PeriodicalId":203,"journal":{"name":"Land Degradation & Development","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of soil microorganisms to soil fertility in the process of vegetation rehabilitation of degraded Pinus massoniana forest\",\"authors\":\"Xiaopeng Wang,&nbsp;He Wang,&nbsp;Man Zhou,&nbsp;Zuopin Zhuo,&nbsp;Gengen Lin,&nbsp;Yue Zhang,&nbsp;Fangshi Jiang,&nbsp;Yanhe Huang,&nbsp;Jinshi Lin\",\"doi\":\"10.1002/ldr.5147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rehabilitation of diverse and three-dimensional forest vegetation patterns is crucial for preventing forest degradation and improving soil fertility. However, the relationship between soil microbial community and soil fertility was not clear. To accurately assess the capability of vegetation restoration measures on the real impact on degraded soil ecosystems. We selected three vegetation rehabilitation models of degraded <i>Pinus massoniana</i> forests in typical soil erosion areas in China as the research objects, with untreated bare land as the control. All three vegetation construction patterns increased the abundance and diversity of soil bacteria and fungi, thereby enhancing the stability of the soil ecosystem. Additionally, the vegetation rehabilitation models also altered the community structure of soil bacteria and fungi in the degraded <i>P. massoniana</i> forests. The pH and soil fertility index (IFI) were the main factors leading to variations in the community structure of the soil bacteria and fungi. Among them, the grass-planting model showed a significantly greater improvement in the soil fertility of degraded <i>P. massoniana</i> forests than the shrub-planting and arbor-planting models. Furthermore, Ascomycota, Basidiomycota, and Glomeromycota exhibited the most significant response to IFI, indicating their potential as indicator microorganisms for soil fertility changes. The improvement in soil fertility in degraded <i>P. massoniana</i> forests was influenced primarily by the increase in urease activity (S-UE) according to the vegetation rehabilitation models (84.20%, <i>p</i> = 0.000). In conclusion, the grass-planting system effectively improved the soil ecosystem quality of degraded <i>P. massoniana</i> forests in southern erosion-prone areas of China and was suitable for further application.</p>\",\"PeriodicalId\":203,\"journal\":{\"name\":\"Land Degradation & Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Land Degradation & Development\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ldr.5147\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Degradation & Development","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ldr.5147","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

恢复多样化和立体化的森林植被模式对于防止森林退化和提高土壤肥力至关重要。然而,土壤微生物群落与土壤肥力之间的关系并不明确。为了准确评估植被恢复措施对退化土壤生态系统实际影响的能力。我们选取了中国典型水土流失地区退化的马尾松林为研究对象,以未经处理的裸地为对照,建立了三种植被恢复模式。三种植被建设模式都增加了土壤细菌和真菌的数量和多样性,从而提高了土壤生态系统的稳定性。此外,植被恢复模式还改变了退化的马尾松林中土壤细菌和真菌的群落结构。pH 值和土壤肥力指数(IFI)是导致土壤细菌和真菌群落结构变化的主要因素。其中,植草模式对退化的马齿苋林土壤肥力的改善程度明显高于灌木种植和乔木种植模式。此外,子囊菌群(Ascomycota)、担子菌群(Basidiomycota)和球菌群(Glomeromycota)对 IFI 的反应最为显著,这表明它们有可能成为土壤肥力变化的指示微生物。根据植被恢复模型(84.20%,p = 0.000),退化的 P. massoniana 森林的土壤肥力改善主要受脲酶活性(S-UE)增加的影响。总之,植草系统有效改善了中国南方水土流失易发区退化马尾松林的土壤生态系统质量,适合进一步推广应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Response of soil microorganisms to soil fertility in the process of vegetation rehabilitation of degraded Pinus massoniana forest

The rehabilitation of diverse and three-dimensional forest vegetation patterns is crucial for preventing forest degradation and improving soil fertility. However, the relationship between soil microbial community and soil fertility was not clear. To accurately assess the capability of vegetation restoration measures on the real impact on degraded soil ecosystems. We selected three vegetation rehabilitation models of degraded Pinus massoniana forests in typical soil erosion areas in China as the research objects, with untreated bare land as the control. All three vegetation construction patterns increased the abundance and diversity of soil bacteria and fungi, thereby enhancing the stability of the soil ecosystem. Additionally, the vegetation rehabilitation models also altered the community structure of soil bacteria and fungi in the degraded P. massoniana forests. The pH and soil fertility index (IFI) were the main factors leading to variations in the community structure of the soil bacteria and fungi. Among them, the grass-planting model showed a significantly greater improvement in the soil fertility of degraded P. massoniana forests than the shrub-planting and arbor-planting models. Furthermore, Ascomycota, Basidiomycota, and Glomeromycota exhibited the most significant response to IFI, indicating their potential as indicator microorganisms for soil fertility changes. The improvement in soil fertility in degraded P. massoniana forests was influenced primarily by the increase in urease activity (S-UE) according to the vegetation rehabilitation models (84.20%, p = 0.000). In conclusion, the grass-planting system effectively improved the soil ecosystem quality of degraded P. massoniana forests in southern erosion-prone areas of China and was suitable for further application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Land Degradation & Development
Land Degradation & Development 农林科学-环境科学
CiteScore
7.70
自引率
8.50%
发文量
379
审稿时长
5.5 months
期刊介绍: Land Degradation & Development is an international journal which seeks to promote rational study of the recognition, monitoring, control and rehabilitation of degradation in terrestrial environments. The journal focuses on: - what land degradation is; - what causes land degradation; - the impacts of land degradation - the scale of land degradation; - the history, current status or future trends of land degradation; - avoidance, mitigation and control of land degradation; - remedial actions to rehabilitate or restore degraded land; - sustainable land management.
期刊最新文献
A Comprehensive Study on Young Roots of Acacia mangium Willd. Species for Soil Bioengineering The changes of vegetation community characteristics led to the reconstruction of soil microbial communities and functions during the cultivation of degraded alpine meadows Assessment of nutrient differences in detached soil particles between cropland and revegetated abandoned land Varying patterns of taxonomic and functional plant composition and diversity across different types of urban and rural grasslands Trade-Offs and Optimization of Ecosystem Services in the Plain Terminal Lake Basin: A Case Study of Xinjiang
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1