细胞农业的可持续培养基原料

IF 12.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology advances Pub Date : 2024-04-26 DOI:10.1016/j.biotechadv.2024.108367
Lutz Grossmann
{"title":"细胞农业的可持续培养基原料","authors":"Lutz Grossmann","doi":"10.1016/j.biotechadv.2024.108367","DOIUrl":null,"url":null,"abstract":"<div><p>The global food system is shifting towards cellular agriculture, a second domestication marked by cultivating microorganisms and tissues for sustainable food production. This involves tissue engineering, precision fermentation, and microbial biomass fermentation to establish food value chains independent of traditional agriculture. However, these techniques rely on growth media sourced from agricultural, chemical (fossil fuels), and mining supply chains, raising concerns about land use competition, emissions, and resource depletion. Fermentable sugars, nitrogen, and phosphates are key ingredients derived from starch crops, energy-intensive fossil fuel based processes, and finite phosphorus resources, respectively. This review explores sustainable alternatives to reduce land use and emissions associated with cellular agriculture media ingredients. Sustainable alternatives to first generation sugars (lignocellulosic substrates, sidestreams, and gaseous feedstocks), sustainable nitrogen sources (sidestreams, green ammonia, biological nitrogen fixation), and efficient use of phosphates are reviewed. Especially cellulosic sugars, gaseous chemoautotrophic feedstocks, green ammonia, and phosphate recycling are the most promising technologies but economic constraints hinder large-scale adoption, necessitating more efficient processes and cost reduction. Collaborative efforts are vital for a biotechnological future grounded in sustainable feedstocks, mitigating competition with agricultural land and emissions.</p></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":"73 ","pages":"Article 108367"},"PeriodicalIF":12.1000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable media feedstocks for cellular agriculture\",\"authors\":\"Lutz Grossmann\",\"doi\":\"10.1016/j.biotechadv.2024.108367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The global food system is shifting towards cellular agriculture, a second domestication marked by cultivating microorganisms and tissues for sustainable food production. This involves tissue engineering, precision fermentation, and microbial biomass fermentation to establish food value chains independent of traditional agriculture. However, these techniques rely on growth media sourced from agricultural, chemical (fossil fuels), and mining supply chains, raising concerns about land use competition, emissions, and resource depletion. Fermentable sugars, nitrogen, and phosphates are key ingredients derived from starch crops, energy-intensive fossil fuel based processes, and finite phosphorus resources, respectively. This review explores sustainable alternatives to reduce land use and emissions associated with cellular agriculture media ingredients. Sustainable alternatives to first generation sugars (lignocellulosic substrates, sidestreams, and gaseous feedstocks), sustainable nitrogen sources (sidestreams, green ammonia, biological nitrogen fixation), and efficient use of phosphates are reviewed. Especially cellulosic sugars, gaseous chemoautotrophic feedstocks, green ammonia, and phosphate recycling are the most promising technologies but economic constraints hinder large-scale adoption, necessitating more efficient processes and cost reduction. Collaborative efforts are vital for a biotechnological future grounded in sustainable feedstocks, mitigating competition with agricultural land and emissions.</p></div>\",\"PeriodicalId\":8946,\"journal\":{\"name\":\"Biotechnology advances\",\"volume\":\"73 \",\"pages\":\"Article 108367\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology advances\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0734975024000612\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734975024000612","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全球粮食系统正在向细胞农业转变,这是第二次驯化,其特点是培养微生物和组织以实现可持续粮食生产。这涉及组织工程、精准发酵和微生物生物质发酵,以建立独立于传统农业的食品价值链。然而,这些技术依赖于来自农业、化学(化石燃料)和采矿供应链的生长介质,引发了对土地使用竞争、排放和资源枯竭的担忧。可发酵的糖、氮和磷酸盐是关键成分,分别来自淀粉作物、能源密集型化石燃料工艺和有限的磷资源。本综述探讨了可减少与细胞农业介质成分相关的土地使用和排放的可持续替代品。本文综述了第一代糖类的可持续替代品(木质纤维素基质、副产品和气体原料)、可持续氮源(副产品、绿色氨、生物固氮)以及磷酸盐的有效利用。特别是纤维素糖、气态化学自养原料、绿色氨和磷酸盐循环利用是最有前途的技术,但经济上的限制阻碍了这些技术的大规模应用,因此必须采用更高效的工艺并降低成本。未来的生物技术必须以可持续原料为基础,减少与农业用地的竞争和排放,因此,合作努力至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sustainable media feedstocks for cellular agriculture

The global food system is shifting towards cellular agriculture, a second domestication marked by cultivating microorganisms and tissues for sustainable food production. This involves tissue engineering, precision fermentation, and microbial biomass fermentation to establish food value chains independent of traditional agriculture. However, these techniques rely on growth media sourced from agricultural, chemical (fossil fuels), and mining supply chains, raising concerns about land use competition, emissions, and resource depletion. Fermentable sugars, nitrogen, and phosphates are key ingredients derived from starch crops, energy-intensive fossil fuel based processes, and finite phosphorus resources, respectively. This review explores sustainable alternatives to reduce land use and emissions associated with cellular agriculture media ingredients. Sustainable alternatives to first generation sugars (lignocellulosic substrates, sidestreams, and gaseous feedstocks), sustainable nitrogen sources (sidestreams, green ammonia, biological nitrogen fixation), and efficient use of phosphates are reviewed. Especially cellulosic sugars, gaseous chemoautotrophic feedstocks, green ammonia, and phosphate recycling are the most promising technologies but economic constraints hinder large-scale adoption, necessitating more efficient processes and cost reduction. Collaborative efforts are vital for a biotechnological future grounded in sustainable feedstocks, mitigating competition with agricultural land and emissions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology advances
Biotechnology advances 工程技术-生物工程与应用微生物
CiteScore
25.50
自引率
2.50%
发文量
167
审稿时长
37 days
期刊介绍: Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.
期刊最新文献
A non-classical view of antibody properties: Allosteric effect between variable and constant regions. Expanding the frontiers of genome engineering: A comprehensive review of CRISPR-associated transposons. Advances and challenges in preparing membrane proteins for native mass spectrometry Leveraging independent component analysis to unravel transcriptional regulatory networks: A critical review and future directions. Recent advances in culture medium design for enhanced production of monoclonal antibodies in CHO cells: A comparative study of machine learning and systems biology approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1