用于过氧化氢电催化合成的碳电极:综述

IF 5.7 3区 材料科学 Q2 Materials Science New Carbon Materials Pub Date : 2024-04-01 DOI:10.1016/S1872-5805(24)60846-2
Xian-huai Huang , Xin-ke Yang , Ling Gui , Shao-gen Liu , Kun Wang , Hong-wei Rong , Wei Wei
{"title":"用于过氧化氢电催化合成的碳电极:综述","authors":"Xian-huai Huang ,&nbsp;Xin-ke Yang ,&nbsp;Ling Gui ,&nbsp;Shao-gen Liu ,&nbsp;Kun Wang ,&nbsp;Hong-wei Rong ,&nbsp;Wei Wei","doi":"10.1016/S1872-5805(24)60846-2","DOIUrl":null,"url":null,"abstract":"<div><p>Electrocatalytic oxygen reduction by a 2e<sup>−</sup> pathway enables the instantaneous synthesis of H<sub>2</sub>O<sub>2</sub>, a process that is far superior to the conventional anthraquinone process. In recent years, the electrocatalytic synthesis of H<sub>2</sub>O<sub>2</sub> using carbon electrodes has attracted more and more attention because of its excellent catalytic performance and superior stability. The relationship between material modification, wettability and the rate of H<sub>2</sub>O<sub>2</sub> synthesis and service life is considered together with the three-phase interface. The structure of the carbon electrodes and the principles of electrocatalytic H<sub>2</sub>O<sub>2</sub> synthesis are first introduced, and four major catalysts are reviewed, namely, monolithic carbon materials, metal-free catalysts, noble metal catalysts and non-precious metal catalysts. The effects of the metal anode and the electrolyte on the three-phase interface are described. The relationship between carbon electrode wettability and the three-phase interface is described, pointing out that modification focusing on improving the selectivity of the 2e<sup>−</sup> pathway can also impact electrode wettability. In addition, the relationship between the design of the components in the electrochemical system and their effect on the efficiency of H<sub>2</sub>O<sub>2</sub> synthesis is discussed for carbon electrodes. Finally, we present our analysis of the current problems in the electrocatalytic synthesis of H<sub>2</sub>O<sub>2</sub> for carbon electrodes and future research directions.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 2","pages":"Pages 254-270"},"PeriodicalIF":5.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon electrodes for the electrocatalytic synthesis of hydrogen peroxide: A review\",\"authors\":\"Xian-huai Huang ,&nbsp;Xin-ke Yang ,&nbsp;Ling Gui ,&nbsp;Shao-gen Liu ,&nbsp;Kun Wang ,&nbsp;Hong-wei Rong ,&nbsp;Wei Wei\",\"doi\":\"10.1016/S1872-5805(24)60846-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrocatalytic oxygen reduction by a 2e<sup>−</sup> pathway enables the instantaneous synthesis of H<sub>2</sub>O<sub>2</sub>, a process that is far superior to the conventional anthraquinone process. In recent years, the electrocatalytic synthesis of H<sub>2</sub>O<sub>2</sub> using carbon electrodes has attracted more and more attention because of its excellent catalytic performance and superior stability. The relationship between material modification, wettability and the rate of H<sub>2</sub>O<sub>2</sub> synthesis and service life is considered together with the three-phase interface. The structure of the carbon electrodes and the principles of electrocatalytic H<sub>2</sub>O<sub>2</sub> synthesis are first introduced, and four major catalysts are reviewed, namely, monolithic carbon materials, metal-free catalysts, noble metal catalysts and non-precious metal catalysts. The effects of the metal anode and the electrolyte on the three-phase interface are described. The relationship between carbon electrode wettability and the three-phase interface is described, pointing out that modification focusing on improving the selectivity of the 2e<sup>−</sup> pathway can also impact electrode wettability. In addition, the relationship between the design of the components in the electrochemical system and their effect on the efficiency of H<sub>2</sub>O<sub>2</sub> synthesis is discussed for carbon electrodes. Finally, we present our analysis of the current problems in the electrocatalytic synthesis of H<sub>2</sub>O<sub>2</sub> for carbon electrodes and future research directions.</p></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"39 2\",\"pages\":\"Pages 254-270\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580524608462\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580524608462","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

通过 2e- 途径进行电催化氧还原可实现 H2O2 的瞬时合成,这一过程远远优于传统的蒽醌过程。近年来,利用碳电极电催化合成 H2O2 因其优异的催化性能和超强的稳定性而受到越来越多的关注。本研究结合三相界面考虑了材料改性、润湿性与 H2O2 合成速率和使用寿命之间的关系。首先介绍了碳电极的结构和电催化 H2O2 合成的原理,并综述了四种主要催化剂,即整体碳材料、无金属催化剂、贵金属催化剂和非贵金属催化剂。介绍了金属阳极和电解质对三相界面的影响。介绍了碳电极润湿性与三相界面之间的关系,指出以提高 2e- 途径选择性为重点的改性也会影响电极润湿性。此外,我们还讨论了碳电极电化学系统中各组件的设计与其对 H2O2 合成效率的影响之间的关系。最后,我们分析了目前碳电极电催化合成 H2O2 的问题以及未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbon electrodes for the electrocatalytic synthesis of hydrogen peroxide: A review

Electrocatalytic oxygen reduction by a 2e pathway enables the instantaneous synthesis of H2O2, a process that is far superior to the conventional anthraquinone process. In recent years, the electrocatalytic synthesis of H2O2 using carbon electrodes has attracted more and more attention because of its excellent catalytic performance and superior stability. The relationship between material modification, wettability and the rate of H2O2 synthesis and service life is considered together with the three-phase interface. The structure of the carbon electrodes and the principles of electrocatalytic H2O2 synthesis are first introduced, and four major catalysts are reviewed, namely, monolithic carbon materials, metal-free catalysts, noble metal catalysts and non-precious metal catalysts. The effects of the metal anode and the electrolyte on the three-phase interface are described. The relationship between carbon electrode wettability and the three-phase interface is described, pointing out that modification focusing on improving the selectivity of the 2e pathway can also impact electrode wettability. In addition, the relationship between the design of the components in the electrochemical system and their effect on the efficiency of H2O2 synthesis is discussed for carbon electrodes. Finally, we present our analysis of the current problems in the electrocatalytic synthesis of H2O2 for carbon electrodes and future research directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
期刊最新文献
A review of hard carbon anodes for rechargeable sodium-ion batteries Recent advances in producing hollow carbon spheres for use in sodium−sulfur and potassium−sulfur batteries Design, progress and challenges of 3D carbon-based thermally conductive networks The application of metal–organic frameworks and their derivatives for lithium-ion capacitors A review of the carbon coating of the silicon anode in high-performance lithium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1