{"title":"盐度胁迫下补充 GABA(γ-氨基丁酸)对假小球藻生物量、色素、脂质和蛋白质含量的影响","authors":"Pooja Bhatnagar , Prateek Gururani , Jyoti Rawat , Krishna Kumar Jaiswal , Pankaj Gautam , Manisha Nanda , P.K. Chauhan , Mikhail S. Vlaskin , Vinod Kumar","doi":"10.1016/j.crbiot.2024.100223","DOIUrl":null,"url":null,"abstract":"<div><p>Microalgae synthesize valuable compounds like pigments, proteins, lipids and carbohydrates under stress conditions, which make them an interesting feedstock for different industries. The effect of GABA (Gamma-aminobutyric acid) supplementation under salinity stress conditions was investigated on growth, biomass, pigments, lipid and protein content of <em>Pseudochlorella pringsheimii</em>. Between the varying treatments, 5 g/L NaCl combined with 2.5 mM GABA was observed as the best concentration for stimulating the production of bioactive compounds in microalga <em>P. pringsheimii</em>. The results revealed a significant increase in biomass content by 93.24 %, compared with the control. Moreover, a significant increase was also observed in the production of chlorophyll (chl) a, chlorophyll (chl) b, total carotenoids (car), protein and lipid content by 112.15 %, 84 %, 29.94 %, 23.08 % and 35.63 %, respectively. However, as compared to control and salinity stress alone, the total carbohydrate content was sharply declined by 52.30 % and 101.79 % in GABA supplemented groups. In addition, the presence of fatty acids and different biomolecules were also confirmed by GC–MS and FTIR analysis. The existence of different essential and non-essential amino acids in substantial amounts was validated by UHPLC analysis. Collectively, the present work contributes to a novel strategy for boosting the coproduction of biomass, lipids, proteins and pigments in <em>P. pringsheimii</em> under unfavorable conditions.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000492/pdfft?md5=02dcfd93316f7fb66470a8dc9aeaf897&pid=1-s2.0-S2590262824000492-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of GABA (Gamma-aminobutyric acid) supplementation on biomass, pigments, lipid and protein content of Pseudochlorella pringsheimii under salinity stress\",\"authors\":\"Pooja Bhatnagar , Prateek Gururani , Jyoti Rawat , Krishna Kumar Jaiswal , Pankaj Gautam , Manisha Nanda , P.K. Chauhan , Mikhail S. Vlaskin , Vinod Kumar\",\"doi\":\"10.1016/j.crbiot.2024.100223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microalgae synthesize valuable compounds like pigments, proteins, lipids and carbohydrates under stress conditions, which make them an interesting feedstock for different industries. The effect of GABA (Gamma-aminobutyric acid) supplementation under salinity stress conditions was investigated on growth, biomass, pigments, lipid and protein content of <em>Pseudochlorella pringsheimii</em>. Between the varying treatments, 5 g/L NaCl combined with 2.5 mM GABA was observed as the best concentration for stimulating the production of bioactive compounds in microalga <em>P. pringsheimii</em>. The results revealed a significant increase in biomass content by 93.24 %, compared with the control. Moreover, a significant increase was also observed in the production of chlorophyll (chl) a, chlorophyll (chl) b, total carotenoids (car), protein and lipid content by 112.15 %, 84 %, 29.94 %, 23.08 % and 35.63 %, respectively. However, as compared to control and salinity stress alone, the total carbohydrate content was sharply declined by 52.30 % and 101.79 % in GABA supplemented groups. In addition, the presence of fatty acids and different biomolecules were also confirmed by GC–MS and FTIR analysis. The existence of different essential and non-essential amino acids in substantial amounts was validated by UHPLC analysis. Collectively, the present work contributes to a novel strategy for boosting the coproduction of biomass, lipids, proteins and pigments in <em>P. pringsheimii</em> under unfavorable conditions.</p></div>\",\"PeriodicalId\":52676,\"journal\":{\"name\":\"Current Research in Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000492/pdfft?md5=02dcfd93316f7fb66470a8dc9aeaf897&pid=1-s2.0-S2590262824000492-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Influence of GABA (Gamma-aminobutyric acid) supplementation on biomass, pigments, lipid and protein content of Pseudochlorella pringsheimii under salinity stress
Microalgae synthesize valuable compounds like pigments, proteins, lipids and carbohydrates under stress conditions, which make them an interesting feedstock for different industries. The effect of GABA (Gamma-aminobutyric acid) supplementation under salinity stress conditions was investigated on growth, biomass, pigments, lipid and protein content of Pseudochlorella pringsheimii. Between the varying treatments, 5 g/L NaCl combined with 2.5 mM GABA was observed as the best concentration for stimulating the production of bioactive compounds in microalga P. pringsheimii. The results revealed a significant increase in biomass content by 93.24 %, compared with the control. Moreover, a significant increase was also observed in the production of chlorophyll (chl) a, chlorophyll (chl) b, total carotenoids (car), protein and lipid content by 112.15 %, 84 %, 29.94 %, 23.08 % and 35.63 %, respectively. However, as compared to control and salinity stress alone, the total carbohydrate content was sharply declined by 52.30 % and 101.79 % in GABA supplemented groups. In addition, the presence of fatty acids and different biomolecules were also confirmed by GC–MS and FTIR analysis. The existence of different essential and non-essential amino acids in substantial amounts was validated by UHPLC analysis. Collectively, the present work contributes to a novel strategy for boosting the coproduction of biomass, lipids, proteins and pigments in P. pringsheimii under unfavorable conditions.
期刊介绍:
Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines.
Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.