重型线路的覆盖范围有多大?

IF 1 2区 数学 Q1 MATHEMATICS Journal of the London Mathematical Society-Second Series Pub Date : 2024-04-30 DOI:10.1112/jlms.12910
Damian Dąbrowski, Tuomas Orponen, Hong Wang
{"title":"重型线路的覆盖范围有多大?","authors":"Damian Dąbrowski,&nbsp;Tuomas Orponen,&nbsp;Hong Wang","doi":"10.1112/jlms.12910","DOIUrl":null,"url":null,"abstract":"<p>One formulation of Marstrand's slicing theorem is the following. Assume that <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$t \\in (1,2]$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$B \\subset \\mathbb {R}^{2}$</annotation>\n </semantics></math> is a Borel set with <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mi>t</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>)</mo>\n </mrow>\n <mo>&lt;</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\mathcal {H}^{t}(B) &amp;lt; \\infty$</annotation>\n </semantics></math>. Then, for almost all directions <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <mo>∈</mo>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n </mrow>\n <annotation>$e \\in S^{1}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>t</mi>\n </msup>\n <annotation>$\\mathcal {H}^{t}$</annotation>\n </semantics></math> almost all of <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> is covered by lines <span></span><math>\n <semantics>\n <mi>ℓ</mi>\n <annotation>$\\ell$</annotation>\n </semantics></math> parallel to <span></span><math>\n <semantics>\n <mi>e</mi>\n <annotation>$e$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>dim</mo>\n <mi>H</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>∩</mo>\n <mi>ℓ</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>t</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\dim _{\\mathrm{H}}(B \\cap \\ell) = t - 1$</annotation>\n </semantics></math>. We investigate the prospects of sharpening Marstrand's result in the following sense: in a generic direction <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <mo>∈</mo>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n </mrow>\n <annotation>$e \\in S^{1}$</annotation>\n </semantics></math>, is it true that a strictly less than <span></span><math>\n <semantics>\n <mi>t</mi>\n <annotation>$t$</annotation>\n </semantics></math>-dimensional part of <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> is covered by the heavy lines <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\ell \\subset \\mathbb {R}^{2}$</annotation>\n </semantics></math>, namely those with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>dim</mo>\n <mi>H</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>∩</mo>\n <mi>ℓ</mi>\n <mo>)</mo>\n </mrow>\n <mo>&gt;</mo>\n <mi>t</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\dim _{\\mathrm{H}} (B \\cap \\ell) &amp;gt; t - 1$</annotation>\n </semantics></math>? A positive answer for <span></span><math>\n <semantics>\n <mi>t</mi>\n <annotation>$t$</annotation>\n </semantics></math>-regular sets <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$B \\subset \\mathbb {R}^{2}$</annotation>\n </semantics></math> was previously obtained by the first author. The answer for general Borel sets turns out to be negative for <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mstyle>\n <mfrac>\n <mn>3</mn>\n <mn>2</mn>\n </mfrac>\n </mstyle>\n <mo>]</mo>\n </mrow>\n <annotation>$t \\in (1,\\tfrac{3}{2}]$</annotation>\n </semantics></math> and positive for <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mstyle>\n <mfrac>\n <mn>3</mn>\n <mn>2</mn>\n </mfrac>\n </mstyle>\n <mo>,</mo>\n <mn>2</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$t \\in (\\tfrac{3}{2},2]$</annotation>\n </semantics></math>. More precisely, the heavy lines can cover up to a <span></span><math>\n <semantics>\n <mrow>\n <mi>min</mi>\n <mo>{</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mn>3</mn>\n <mo>−</mo>\n <mi>t</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\min \\lbrace t,3 - t\\rbrace$</annotation>\n </semantics></math> dimensional part of <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> in a generic direction. We also consider the part of <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> covered by the <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>$s$</annotation>\n </semantics></math>-heavy lines, namely those with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>dim</mo>\n <mi>H</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>∩</mo>\n <mi>ℓ</mi>\n <mo>)</mo>\n </mrow>\n <mo>⩾</mo>\n <mi>s</mi>\n </mrow>\n <annotation>$\\dim _{\\mathrm{H}}(B \\cap \\ell) \\geqslant s$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>&gt;</mo>\n <mi>t</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$s &amp;gt; t - 1$</annotation>\n </semantics></math>. We establish a sharp answer to the question: how much can the <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>$s$</annotation>\n </semantics></math>-heavy lines cover in a generic direction? Finally, we identify a new class of sets called sub-uniformly distributed sets, which generalise Ahlfors-regular sets. Roughly speaking, these sets share the spatial uniformity of Ahlfors-regular sets, but pose no restrictions on uniformity across different scales. We then extend and sharpen the first author's previous result on Ahlfors-regular sets to the class of sub-uniformly distributed sets.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12910","citationCount":"0","resultStr":"{\"title\":\"How much can heavy lines cover?\",\"authors\":\"Damian Dąbrowski,&nbsp;Tuomas Orponen,&nbsp;Hong Wang\",\"doi\":\"10.1112/jlms.12910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One formulation of Marstrand's slicing theorem is the following. Assume that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$t \\\\in (1,2]$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>B</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$B \\\\subset \\\\mathbb {R}^{2}$</annotation>\\n </semantics></math> is a Borel set with <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mi>t</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>B</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>&lt;</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$\\\\mathcal {H}^{t}(B) &amp;lt; \\\\infty$</annotation>\\n </semantics></math>. Then, for almost all directions <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n <mo>∈</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n </mrow>\\n <annotation>$e \\\\in S^{1}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mi>t</mi>\\n </msup>\\n <annotation>$\\\\mathcal {H}^{t}$</annotation>\\n </semantics></math> almost all of <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$B$</annotation>\\n </semantics></math> is covered by lines <span></span><math>\\n <semantics>\\n <mi>ℓ</mi>\\n <annotation>$\\\\ell$</annotation>\\n </semantics></math> parallel to <span></span><math>\\n <semantics>\\n <mi>e</mi>\\n <annotation>$e$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mo>dim</mo>\\n <mi>H</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>B</mi>\\n <mo>∩</mo>\\n <mi>ℓ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>t</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\dim _{\\\\mathrm{H}}(B \\\\cap \\\\ell) = t - 1$</annotation>\\n </semantics></math>. We investigate the prospects of sharpening Marstrand's result in the following sense: in a generic direction <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n <mo>∈</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n </mrow>\\n <annotation>$e \\\\in S^{1}$</annotation>\\n </semantics></math>, is it true that a strictly less than <span></span><math>\\n <semantics>\\n <mi>t</mi>\\n <annotation>$t$</annotation>\\n </semantics></math>-dimensional part of <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$B$</annotation>\\n </semantics></math> is covered by the heavy lines <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\ell \\\\subset \\\\mathbb {R}^{2}$</annotation>\\n </semantics></math>, namely those with <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mo>dim</mo>\\n <mi>H</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>B</mi>\\n <mo>∩</mo>\\n <mi>ℓ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>&gt;</mo>\\n <mi>t</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\dim _{\\\\mathrm{H}} (B \\\\cap \\\\ell) &amp;gt; t - 1$</annotation>\\n </semantics></math>? A positive answer for <span></span><math>\\n <semantics>\\n <mi>t</mi>\\n <annotation>$t$</annotation>\\n </semantics></math>-regular sets <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>B</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$B \\\\subset \\\\mathbb {R}^{2}$</annotation>\\n </semantics></math> was previously obtained by the first author. The answer for general Borel sets turns out to be negative for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mstyle>\\n <mfrac>\\n <mn>3</mn>\\n <mn>2</mn>\\n </mfrac>\\n </mstyle>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$t \\\\in (1,\\\\tfrac{3}{2}]$</annotation>\\n </semantics></math> and positive for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mstyle>\\n <mfrac>\\n <mn>3</mn>\\n <mn>2</mn>\\n </mfrac>\\n </mstyle>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$t \\\\in (\\\\tfrac{3}{2},2]$</annotation>\\n </semantics></math>. More precisely, the heavy lines can cover up to a <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>min</mi>\\n <mo>{</mo>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mn>3</mn>\\n <mo>−</mo>\\n <mi>t</mi>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\min \\\\lbrace t,3 - t\\\\rbrace$</annotation>\\n </semantics></math> dimensional part of <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$B$</annotation>\\n </semantics></math> in a generic direction. We also consider the part of <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$B$</annotation>\\n </semantics></math> covered by the <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>$s$</annotation>\\n </semantics></math>-heavy lines, namely those with <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mo>dim</mo>\\n <mi>H</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>B</mi>\\n <mo>∩</mo>\\n <mi>ℓ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>⩾</mo>\\n <mi>s</mi>\\n </mrow>\\n <annotation>$\\\\dim _{\\\\mathrm{H}}(B \\\\cap \\\\ell) \\\\geqslant s$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mo>&gt;</mo>\\n <mi>t</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$s &amp;gt; t - 1$</annotation>\\n </semantics></math>. We establish a sharp answer to the question: how much can the <span></span><math>\\n <semantics>\\n <mi>s</mi>\\n <annotation>$s$</annotation>\\n </semantics></math>-heavy lines cover in a generic direction? Finally, we identify a new class of sets called sub-uniformly distributed sets, which generalise Ahlfors-regular sets. Roughly speaking, these sets share the spatial uniformity of Ahlfors-regular sets, but pose no restrictions on uniformity across different scales. We then extend and sharpen the first author's previous result on Ahlfors-regular sets to the class of sub-uniformly distributed sets.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12910\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12910\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12910","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

更确切地说,粗线条可以覆盖到最小 { t , 3 - t }。 $min \lbrace t,3 - t\rbrace$ 维的部分。我们还考虑了 B $B$ 被 s $s$ 重线覆盖的部分,即那些 dim H ( B ∩ ℓ ) ⩾ s $\dim _{mathrm{H}}(B \cap \ell) \geqslant s$ for s &gt; t - 1 $s &amp;gt; t - 1$ 。我们给出了问题的明确答案:在一般方向上,s $s$ 重线能覆盖多少范围?最后,我们确定了一类新的集合,称为亚均匀分布集合,它们是阿弗斯正则集合的一般化。粗略地说,这些集合与 Ahlfors 不规则集合一样具有空间均匀性,但对不同尺度上的均匀性没有限制。然后,我们将第一作者之前关于阿氏正则集合的结果扩展到次均匀分布集合类,并使之更加清晰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How much can heavy lines cover?

One formulation of Marstrand's slicing theorem is the following. Assume that t ( 1 , 2 ] $t \in (1,2]$ , and B R 2 $B \subset \mathbb {R}^{2}$ is a Borel set with H t ( B ) < $\mathcal {H}^{t}(B) &lt; \infty$ . Then, for almost all directions e S 1 $e \in S^{1}$ , H t $\mathcal {H}^{t}$ almost all of B $B$ is covered by lines $\ell$ parallel to e $e$ with dim H ( B ) = t 1 $\dim _{\mathrm{H}}(B \cap \ell) = t - 1$ . We investigate the prospects of sharpening Marstrand's result in the following sense: in a generic direction e S 1 $e \in S^{1}$ , is it true that a strictly less than t $t$ -dimensional part of B $B$ is covered by the heavy lines R 2 $\ell \subset \mathbb {R}^{2}$ , namely those with dim H ( B ) > t 1 $\dim _{\mathrm{H}} (B \cap \ell) &gt; t - 1$ ? A positive answer for t $t$ -regular sets B R 2 $B \subset \mathbb {R}^{2}$ was previously obtained by the first author. The answer for general Borel sets turns out to be negative for t ( 1 , 3 2 ] $t \in (1,\tfrac{3}{2}]$ and positive for t ( 3 2 , 2 ] $t \in (\tfrac{3}{2},2]$ . More precisely, the heavy lines can cover up to a min { t , 3 t } $\min \lbrace t,3 - t\rbrace$ dimensional part of B $B$ in a generic direction. We also consider the part of B $B$ covered by the s $s$ -heavy lines, namely those with dim H ( B ) s $\dim _{\mathrm{H}}(B \cap \ell) \geqslant s$ for s > t 1 $s &gt; t - 1$ . We establish a sharp answer to the question: how much can the s $s$ -heavy lines cover in a generic direction? Finally, we identify a new class of sets called sub-uniformly distributed sets, which generalise Ahlfors-regular sets. Roughly speaking, these sets share the spatial uniformity of Ahlfors-regular sets, but pose no restrictions on uniformity across different scales. We then extend and sharpen the first author's previous result on Ahlfors-regular sets to the class of sub-uniformly distributed sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
期刊最新文献
On tame ramification and centers of F $F$ -purity Geometry of Selberg's bisectors in the symmetric space S L ( n , R ) / S O ( n , R ) $SL(n,\mathbb {R})/SO(n,\mathbb {R})$ Asymmetric distribution of extreme values of cubic L $L$ -functions at s = 1 $s=1$ Rational points on complete intersections of cubic and quadric hypersurfaces over F q ( t ) $\mathbb {F}_q(t)$ Countably tight dual ball with a nonseparable measure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1