架起屏障:生物屏障建模和片上器官系统屏障完整性测量的进展与挑战

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Lab on a Chip Pub Date : 2024-05-01 DOI:10.1039/D3LC01027A
Alisa Ugodnikov, Henrik Persson and Craig A. Simmons
{"title":"架起屏障:生物屏障建模和片上器官系统屏障完整性测量的进展与挑战","authors":"Alisa Ugodnikov, Henrik Persson and Craig A. Simmons","doi":"10.1039/D3LC01027A","DOIUrl":null,"url":null,"abstract":"<p >Biological barriers such as the blood–brain barrier, skin, and intestinal mucosal barrier play key roles in homeostasis, disease physiology, and drug delivery – as such, it is important to create representative <em>in vitro</em> models to improve understanding of barrier biology and serve as tools for therapeutic development. Microfluidic cell culture and organ-on-a-chip (OOC) systems enable barrier modelling with greater physiological fidelity than conventional platforms by mimicking key environmental aspects such as fluid shear, accurate microscale dimensions, mechanical cues, extracellular matrix, and geometrically defined co-culture. As the prevalence of barrier-on-chip models increases, so does the importance of tools that can accurately assess barrier integrity and function without disturbing the carefully engineered microenvironment. In this review, we first provide a background on biological barriers and the physiological features that are emulated through <em>in vitro</em> barrier models. Then, we outline molecular permeability and electrical sensing barrier integrity assessment methods, and the related challenges specific to barrier-on-chip implementation. Finally, we discuss future directions in the field, as well important priorities to consider such as fabrication costs, standardization, and bridging gaps between disciplines and stakeholders.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging barriers: advances and challenges in modeling biological barriers and measuring barrier integrity in organ-on-chip systems\",\"authors\":\"Alisa Ugodnikov, Henrik Persson and Craig A. Simmons\",\"doi\":\"10.1039/D3LC01027A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Biological barriers such as the blood–brain barrier, skin, and intestinal mucosal barrier play key roles in homeostasis, disease physiology, and drug delivery – as such, it is important to create representative <em>in vitro</em> models to improve understanding of barrier biology and serve as tools for therapeutic development. Microfluidic cell culture and organ-on-a-chip (OOC) systems enable barrier modelling with greater physiological fidelity than conventional platforms by mimicking key environmental aspects such as fluid shear, accurate microscale dimensions, mechanical cues, extracellular matrix, and geometrically defined co-culture. As the prevalence of barrier-on-chip models increases, so does the importance of tools that can accurately assess barrier integrity and function without disturbing the carefully engineered microenvironment. In this review, we first provide a background on biological barriers and the physiological features that are emulated through <em>in vitro</em> barrier models. Then, we outline molecular permeability and electrical sensing barrier integrity assessment methods, and the related challenges specific to barrier-on-chip implementation. Finally, we discuss future directions in the field, as well important priorities to consider such as fabrication costs, standardization, and bridging gaps between disciplines and stakeholders.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d3lc01027a\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d3lc01027a","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

血脑屏障、皮肤和肠道粘膜屏障等生物屏障在体内平衡、疾病生理学和药物输送方面发挥着关键作用,因此,必须创建具有代表性的体外模型,以增进对屏障生物学的了解,并将其作为治疗开发的工具。微流控细胞培养和器官芯片(OOC)系统能模拟流体剪切力、精确的微尺度尺寸、机械线索、细胞外基质和几何定义的共培养等关键环境因素,与传统平台相比,能以更高的生理保真度建立屏障模型。随着片上屏障模型的普及,能在不干扰精心设计的微环境的情况下准确评估屏障完整性和功能的工具也变得越来越重要。在本综述中,我们首先介绍了生物屏障的背景以及体外屏障模型模拟的生理特征。然后,我们概述了分子通透性和电传感屏障完整性评估方法,以及在芯片上实现屏障所特有的相关挑战。最后,我们讨论了该领域的未来发展方向,以及需要考虑的重要优先事项,如制造成本、标准化以及缩小学科和利益相关者之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bridging barriers: advances and challenges in modeling biological barriers and measuring barrier integrity in organ-on-chip systems

Biological barriers such as the blood–brain barrier, skin, and intestinal mucosal barrier play key roles in homeostasis, disease physiology, and drug delivery – as such, it is important to create representative in vitro models to improve understanding of barrier biology and serve as tools for therapeutic development. Microfluidic cell culture and organ-on-a-chip (OOC) systems enable barrier modelling with greater physiological fidelity than conventional platforms by mimicking key environmental aspects such as fluid shear, accurate microscale dimensions, mechanical cues, extracellular matrix, and geometrically defined co-culture. As the prevalence of barrier-on-chip models increases, so does the importance of tools that can accurately assess barrier integrity and function without disturbing the carefully engineered microenvironment. In this review, we first provide a background on biological barriers and the physiological features that are emulated through in vitro barrier models. Then, we outline molecular permeability and electrical sensing barrier integrity assessment methods, and the related challenges specific to barrier-on-chip implementation. Finally, we discuss future directions in the field, as well important priorities to consider such as fabrication costs, standardization, and bridging gaps between disciplines and stakeholders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
期刊最新文献
Exploring cancer-associated fibroblast-induced resistance to tyrosine kinase inhibitors in hepatoma cells using a liver-on-a-chip model. Effect of base methylation on binding and mobility of bacterial protein Hfq on double-stranded DNA Microfluidic antisolvent crystallization for chiral symmetry breaking Surface modification of paper-based microfluidic devices via initiated chemical vapor deposition A microfluidic system for the cultivation of cyanobacteria with precise light intensity and CO2 control: Enabling growth data acquisition at single-cell resolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1