通过响应面法(RSM)和人工神经网络(ANN)探索表面和孔隙率在氧化钙基吸附剂捕获二氧化碳过程中的作用

IF 7.2 2区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of CO2 Utilization Pub Date : 2024-05-01 DOI:10.1016/j.jcou.2024.102773
Enrique Martínez de Salazar Martínez , María F. Alexandre-Franco , Alberto J. Nieto-Sánchez , Eduardo M. Cuerda-Correa
{"title":"通过响应面法(RSM)和人工神经网络(ANN)探索表面和孔隙率在氧化钙基吸附剂捕获二氧化碳过程中的作用","authors":"Enrique Martínez de Salazar Martínez ,&nbsp;María F. Alexandre-Franco ,&nbsp;Alberto J. Nieto-Sánchez ,&nbsp;Eduardo M. Cuerda-Correa","doi":"10.1016/j.jcou.2024.102773","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, synthetic CaCO<sub>3</sub> materials were utilized as precursors for CaO-based CO<sub>2</sub> sorbents. The investigation examined how various operating parameters—such as synthesis temperature (ST), stirring rate (SR), and surfactant percentage (SP)—impact the properties of the adsorbents. Samples were firstly characterized by X-ray diffraction and Scanning Electron Microscopy (SEM), which revealed that the prevalence of calcite or aragonite crystal phases in the synthetic CaCO<sub>3</sub> precursors can be tuned by adequately choosing the dose of surfactant (Triton-X100®), so that it can be used as a crystal habit and growth modifier. The calcination process applied to the CaCO<sub>3</sub> precursors leads to the formation of partially sinterized cubic crystals of CaO, accompanied by minor quantities (&lt; 5 %) of additional compounds like Ca(OH)<sub>2</sub> or CaSO<sub>4</sub>. Specific surface area (S<sub>BET</sub>) and porosity were determined by measuring the N<sub>2</sub> adsorption isotherms. A CaCO<sub>3</sub> sample with an unprecedented value of S<sub>BET</sub> as large as 116 m<sup>2</sup>/g was prepared operating under optimal conditions. S<sub>BET</sub> and pore volumes were successfully correlated with the CO<sub>2</sub> uptake capacity of the samples. S<sub>BET</sub> is more influential for experiments carried out under diluted CO<sub>2</sub> atmosphere. When pure CO<sub>2</sub> is used, the influence of meso- and micropore volumes (V<sub>me</sub> and V<sub>mi</sub>) is clearly predominant, which suggests that in this latter case diffusion through the porous texture of the samples plays a more remarkable role. A double-way approach through Response Surface Methodology (RSM) and the use of Artificial Neural Networks (ANNs) has been used to analyze the CO<sub>2</sub> uptake capacity of the samples. Within the operational interval, excellent results were obtained for pure and diluted CO<sub>2</sub> flow, and RSM and ANNs have demonstrated to be a very efficient tool to correlate the behavior of the CaO-based materials as CO<sub>2</sub> sorbents with the surface area and pore volumes of the samples. Valuable information on (i) the importance of the different factors under study; (ii) their influence on the surface and porosity of the CaO-derived sorbents; and (iii) the subsequent CO<sub>2</sub> capture performance of the sorbents has been obtained. The results suggest that four parameters have a statistically significant influence on CO<sub>2</sub> uptake. These parameters are SR, the square of SR, its interaction with SP, and the square of SP. Additionally, the study assessed the stability of the CaO-based sorbents over 11 consecutive calcination-carbonation cycles. By adequately choosing the synthesis strategy and conditions, an almost negligible shrinkage effect can be achieved, resulting in a more sustained uptake capacity throughout the cycles.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024001082/pdfft?md5=62eb61dc69f7e1d2d4379f5207892c08&pid=1-s2.0-S2212982024001082-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring the role of surface and porosity in CO2 capture by CaO-based adsorbents through response surface methodology (RSM) and artificial neural networks (ANN)\",\"authors\":\"Enrique Martínez de Salazar Martínez ,&nbsp;María F. Alexandre-Franco ,&nbsp;Alberto J. Nieto-Sánchez ,&nbsp;Eduardo M. Cuerda-Correa\",\"doi\":\"10.1016/j.jcou.2024.102773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, synthetic CaCO<sub>3</sub> materials were utilized as precursors for CaO-based CO<sub>2</sub> sorbents. The investigation examined how various operating parameters—such as synthesis temperature (ST), stirring rate (SR), and surfactant percentage (SP)—impact the properties of the adsorbents. Samples were firstly characterized by X-ray diffraction and Scanning Electron Microscopy (SEM), which revealed that the prevalence of calcite or aragonite crystal phases in the synthetic CaCO<sub>3</sub> precursors can be tuned by adequately choosing the dose of surfactant (Triton-X100®), so that it can be used as a crystal habit and growth modifier. The calcination process applied to the CaCO<sub>3</sub> precursors leads to the formation of partially sinterized cubic crystals of CaO, accompanied by minor quantities (&lt; 5 %) of additional compounds like Ca(OH)<sub>2</sub> or CaSO<sub>4</sub>. Specific surface area (S<sub>BET</sub>) and porosity were determined by measuring the N<sub>2</sub> adsorption isotherms. A CaCO<sub>3</sub> sample with an unprecedented value of S<sub>BET</sub> as large as 116 m<sup>2</sup>/g was prepared operating under optimal conditions. S<sub>BET</sub> and pore volumes were successfully correlated with the CO<sub>2</sub> uptake capacity of the samples. S<sub>BET</sub> is more influential for experiments carried out under diluted CO<sub>2</sub> atmosphere. When pure CO<sub>2</sub> is used, the influence of meso- and micropore volumes (V<sub>me</sub> and V<sub>mi</sub>) is clearly predominant, which suggests that in this latter case diffusion through the porous texture of the samples plays a more remarkable role. A double-way approach through Response Surface Methodology (RSM) and the use of Artificial Neural Networks (ANNs) has been used to analyze the CO<sub>2</sub> uptake capacity of the samples. Within the operational interval, excellent results were obtained for pure and diluted CO<sub>2</sub> flow, and RSM and ANNs have demonstrated to be a very efficient tool to correlate the behavior of the CaO-based materials as CO<sub>2</sub> sorbents with the surface area and pore volumes of the samples. Valuable information on (i) the importance of the different factors under study; (ii) their influence on the surface and porosity of the CaO-derived sorbents; and (iii) the subsequent CO<sub>2</sub> capture performance of the sorbents has been obtained. The results suggest that four parameters have a statistically significant influence on CO<sub>2</sub> uptake. These parameters are SR, the square of SR, its interaction with SP, and the square of SP. Additionally, the study assessed the stability of the CaO-based sorbents over 11 consecutive calcination-carbonation cycles. By adequately choosing the synthesis strategy and conditions, an almost negligible shrinkage effect can be achieved, resulting in a more sustained uptake capacity throughout the cycles.</p></div>\",\"PeriodicalId\":350,\"journal\":{\"name\":\"Journal of CO2 Utilization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212982024001082/pdfft?md5=62eb61dc69f7e1d2d4379f5207892c08&pid=1-s2.0-S2212982024001082-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of CO2 Utilization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212982024001082\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024001082","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用合成 CaCO3 材料作为 CaO 基二氧化碳吸附剂的前体。研究考察了各种操作参数(如合成温度 (ST)、搅拌速率 (SR) 和表面活性剂百分比 (SP))对吸附剂特性的影响。首先利用 X 射线衍射和扫描电子显微镜 (SEM) 对样品进行表征,结果表明,通过适当选择表面活性剂(Triton-X100®)的剂量,可以调整合成 CaCO3 前体中方解石或文石晶体相的普遍性,从而使其成为晶体习性和生长调节剂。煅烧 CaCO3 前驱体的过程会形成部分烧结的立方体 CaO 晶体,并伴有少量(< 5 %)Ca(OH)2 或 CaSO4 等其他化合物。比表面积 (SBET) 和孔隙率是通过测量 N2 吸附等温线确定的。在最佳条件下制备的 CaCO3 样品的 SBET 值达到了前所未有的 116 m2/g。SBET 和孔隙体积成功地与样品的二氧化碳吸收能力相关联。SBET 对在稀释的 CO2 大气中进行的实验影响更大。当使用纯二氧化碳时,中孔和微孔体积(Vme 和 Vmi)的影响明显占主导地位,这表明在后一种情况下,通过样品多孔质地的扩散起着更加显著的作用。通过响应面法(RSM)和人工神经网络(ANN)双管齐下,对样品的二氧化碳吸收能力进行了分析。在运行区间内,纯二氧化碳流和稀释二氧化碳流都获得了优异的结果,RSM 和 ANNs 被证明是一种非常有效的工具,可将氧化钙基材料作为二氧化碳吸附剂的行为与样品的表面积和孔隙体积相关联。在以下方面获得了宝贵的信息:(i) 所研究的不同因素的重要性;(ii) 它们对 CaO 衍生吸附剂表面和孔隙率的影响;以及 (iii) 吸附剂随后的二氧化碳捕获性能。结果表明,有四个参数对二氧化碳的吸收有显著的统计学影响。这些参数是 SR、SR 的平方、SR 与 SP 的相互作用以及 SP 的平方。此外,研究还评估了 CaO 基吸附剂在连续 11 次煅烧-碳化循环中的稳定性。通过适当选择合成策略和条件,几乎可以忽略收缩效应,从而在整个循环过程中获得更持久的吸收能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the role of surface and porosity in CO2 capture by CaO-based adsorbents through response surface methodology (RSM) and artificial neural networks (ANN)

In this study, synthetic CaCO3 materials were utilized as precursors for CaO-based CO2 sorbents. The investigation examined how various operating parameters—such as synthesis temperature (ST), stirring rate (SR), and surfactant percentage (SP)—impact the properties of the adsorbents. Samples were firstly characterized by X-ray diffraction and Scanning Electron Microscopy (SEM), which revealed that the prevalence of calcite or aragonite crystal phases in the synthetic CaCO3 precursors can be tuned by adequately choosing the dose of surfactant (Triton-X100®), so that it can be used as a crystal habit and growth modifier. The calcination process applied to the CaCO3 precursors leads to the formation of partially sinterized cubic crystals of CaO, accompanied by minor quantities (< 5 %) of additional compounds like Ca(OH)2 or CaSO4. Specific surface area (SBET) and porosity were determined by measuring the N2 adsorption isotherms. A CaCO3 sample with an unprecedented value of SBET as large as 116 m2/g was prepared operating under optimal conditions. SBET and pore volumes were successfully correlated with the CO2 uptake capacity of the samples. SBET is more influential for experiments carried out under diluted CO2 atmosphere. When pure CO2 is used, the influence of meso- and micropore volumes (Vme and Vmi) is clearly predominant, which suggests that in this latter case diffusion through the porous texture of the samples plays a more remarkable role. A double-way approach through Response Surface Methodology (RSM) and the use of Artificial Neural Networks (ANNs) has been used to analyze the CO2 uptake capacity of the samples. Within the operational interval, excellent results were obtained for pure and diluted CO2 flow, and RSM and ANNs have demonstrated to be a very efficient tool to correlate the behavior of the CaO-based materials as CO2 sorbents with the surface area and pore volumes of the samples. Valuable information on (i) the importance of the different factors under study; (ii) their influence on the surface and porosity of the CaO-derived sorbents; and (iii) the subsequent CO2 capture performance of the sorbents has been obtained. The results suggest that four parameters have a statistically significant influence on CO2 uptake. These parameters are SR, the square of SR, its interaction with SP, and the square of SP. Additionally, the study assessed the stability of the CaO-based sorbents over 11 consecutive calcination-carbonation cycles. By adequately choosing the synthesis strategy and conditions, an almost negligible shrinkage effect can be achieved, resulting in a more sustained uptake capacity throughout the cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of CO2 Utilization
Journal of CO2 Utilization CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.90
自引率
10.40%
发文量
406
审稿时长
2.8 months
期刊介绍: The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials. The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications. The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.
期刊最新文献
Machine learning-guided optimization of coarse aggregate mix proportion based on CO2 intensity index CO2 derived ABA triblock all-polycarbonate thermoplastic elastomer with ultra-high elastic recovery Efficiency of CO2 photoreduction to hydrocarbons with K2Fe2O4/rGO heterojunction as a photocatalyst Electron traps as a valuable criterium of iron oxide catalysts' performance in CO2 hydrogenation Investigation of the kinetics of methanation of a post-coelectrolysis mixture on a Ni/CZP oxide catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1