周期性驱动力作用下的 Bloom 动力学

IF 1.9 4区 数学 Q2 BIOLOGY Mathematical Biosciences Pub Date : 2024-04-29 DOI:10.1016/j.mbs.2024.109202
Milton Mondal , Tonghua Zhang
{"title":"周期性驱动力作用下的 Bloom 动力学","authors":"Milton Mondal ,&nbsp;Tonghua Zhang","doi":"10.1016/j.mbs.2024.109202","DOIUrl":null,"url":null,"abstract":"<div><p>Phytoplankton bloom received considerable attention for many decades. Different approaches have been used to explain the bloom phenomena. In this paper, we study a Nutrient–Phytoplankton–Zooplankton (NPZ) model consisting of a periodic driving force in the growth rate of phytoplankton due to solar radiation and analyse the dynamics of the corresponding autonomous and non-autonomous systems in different parametric regions. Then we introduce a novel aspect to extend the model by incorporating another periodic driving force into the growth term of the phytoplankton due to sea surface temperature (SST), a key point of innovation. Temperature dependency of the maximum growth rate (<span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>) of the phytoplankton is modelled by the well-known <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>10</mn></mrow></msub></math></span> formulation: <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∗</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>10</mn></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>T</mi><mo>/</mo><mn>10</mn></mrow></msup></mrow></math></span>, where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is maximum growth at <span><math><msup><mrow><mn>0</mn></mrow><mrow><mi>o</mi></mrow></msup></math></span>C. Stability conditions for all three equilibrium points are expressed in terms of the new parameter <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, which appears due to the incorporation of periodic driving forces. System dynamics is explored through a detailed bifurcation analysis, both mathematically and numerically, with respect to the light and temperature dependent phytoplankton growth response. Bloom phenomenon is explained by the saddle point bloom mechanism even when the co-existing equilibrium point does not exist for some values of <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Solar radiation and SST are modelled using sinusoidal functions constructed from satellite data. Our results of the proposed model describe the initiation of the phytoplankton bloom better than an existing model for the region 25–35° W, 40–45° N of the North Atlantic Ocean. An improvement of 14 days (approximately) is observed in the bloom initiation time. The rate of change method (ROC) is applied to predict the bloom initiation.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025556424000622/pdfft?md5=d8d546e5b1bc8b392431f617aa80c7b3&pid=1-s2.0-S0025556424000622-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bloom dynamics under the effects of periodic driving forces\",\"authors\":\"Milton Mondal ,&nbsp;Tonghua Zhang\",\"doi\":\"10.1016/j.mbs.2024.109202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phytoplankton bloom received considerable attention for many decades. Different approaches have been used to explain the bloom phenomena. In this paper, we study a Nutrient–Phytoplankton–Zooplankton (NPZ) model consisting of a periodic driving force in the growth rate of phytoplankton due to solar radiation and analyse the dynamics of the corresponding autonomous and non-autonomous systems in different parametric regions. Then we introduce a novel aspect to extend the model by incorporating another periodic driving force into the growth term of the phytoplankton due to sea surface temperature (SST), a key point of innovation. Temperature dependency of the maximum growth rate (<span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>) of the phytoplankton is modelled by the well-known <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>10</mn></mrow></msub></math></span> formulation: <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∗</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>10</mn></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>T</mi><mo>/</mo><mn>10</mn></mrow></msup></mrow></math></span>, where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is maximum growth at <span><math><msup><mrow><mn>0</mn></mrow><mrow><mi>o</mi></mrow></msup></math></span>C. Stability conditions for all three equilibrium points are expressed in terms of the new parameter <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, which appears due to the incorporation of periodic driving forces. System dynamics is explored through a detailed bifurcation analysis, both mathematically and numerically, with respect to the light and temperature dependent phytoplankton growth response. Bloom phenomenon is explained by the saddle point bloom mechanism even when the co-existing equilibrium point does not exist for some values of <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Solar radiation and SST are modelled using sinusoidal functions constructed from satellite data. Our results of the proposed model describe the initiation of the phytoplankton bloom better than an existing model for the region 25–35° W, 40–45° N of the North Atlantic Ocean. An improvement of 14 days (approximately) is observed in the bloom initiation time. The rate of change method (ROC) is applied to predict the bloom initiation.</p></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0025556424000622/pdfft?md5=d8d546e5b1bc8b392431f617aa80c7b3&pid=1-s2.0-S0025556424000622-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424000622\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424000622","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,浮游植物水华一直备受关注。人们采用了不同的方法来解释浮游植物水华现象。本文研究了一个营养-浮游植物-浮游动物(NPZ)模型,该模型由太阳辐射对浮游植物生长率的周期性驱动力组成,并分析了不同参数区域内相应的自主和非自主系统的动力学。然后,我们引入了一个新的方面来扩展该模型,即在浮游植物的生长项中加入另一个由海面温度(SST)引起的周期性驱动力,这是一个创新点。浮游植物最大生长率(μmax)与温度的关系采用著名的 Q10 公式来模拟:μmax=μ0∗(Q10)T/10,其中μ0 为 0oC 时的最大生长率。所有三个平衡点的稳定条件都用新参数 ρ2 表示,ρ2 的出现是由于加入了周期性驱动力。通过详细的分岔分析,从数学和数值两方面探讨了浮游植物生长响应与光照和温度有关的系统动力学。即使在某些 ρ2 值下不存在共存的平衡点,也能通过鞍点繁殖机制解释繁殖现象。太阳辐射和海温是利用卫星数据构建的正弦函数模拟的。与北大西洋西经 25-35 度、北纬 40-45 度区域的现有模型相比,我们提出的模型结果能更好地描述浮游植物藻华的开始。浮游植物藻华开始时间缩短了 14 天(约)。采用变化率法(ROC)预测水华的开始时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bloom dynamics under the effects of periodic driving forces

Phytoplankton bloom received considerable attention for many decades. Different approaches have been used to explain the bloom phenomena. In this paper, we study a Nutrient–Phytoplankton–Zooplankton (NPZ) model consisting of a periodic driving force in the growth rate of phytoplankton due to solar radiation and analyse the dynamics of the corresponding autonomous and non-autonomous systems in different parametric regions. Then we introduce a novel aspect to extend the model by incorporating another periodic driving force into the growth term of the phytoplankton due to sea surface temperature (SST), a key point of innovation. Temperature dependency of the maximum growth rate (μmax) of the phytoplankton is modelled by the well-known Q10 formulation: μmax=μ0(Q10)T/10, where μ0 is maximum growth at 0oC. Stability conditions for all three equilibrium points are expressed in terms of the new parameter ρ2, which appears due to the incorporation of periodic driving forces. System dynamics is explored through a detailed bifurcation analysis, both mathematically and numerically, with respect to the light and temperature dependent phytoplankton growth response. Bloom phenomenon is explained by the saddle point bloom mechanism even when the co-existing equilibrium point does not exist for some values of ρ2. Solar radiation and SST are modelled using sinusoidal functions constructed from satellite data. Our results of the proposed model describe the initiation of the phytoplankton bloom better than an existing model for the region 25–35° W, 40–45° N of the North Atlantic Ocean. An improvement of 14 days (approximately) is observed in the bloom initiation time. The rate of change method (ROC) is applied to predict the bloom initiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
期刊最新文献
A joint-threshold Filippov model describing the effect of intermittent androgen-deprivation therapy in controlling prostate cancer Adolescent vaping behaviours: Exploring the dynamics of a social contagion model Editorial Board Modeling virus-stimulated proliferation of CD4+ T-cell, cell-to-cell transmission and viral loss in HIV infection dynamics A mathematical model of melatonin synthesis and interactions with the circadian clock
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1