Katie Phair, David Culliton, Carmel Kealey, Damien Brady
{"title":"长链不饱和脂肪酸可改变阪崎肠杆菌的生长并减少生物膜的形成","authors":"Katie Phair, David Culliton, Carmel Kealey, Damien Brady","doi":"10.1111/jfs.13130","DOIUrl":null,"url":null,"abstract":"<p><i>Cronobacter sakazakii</i> is a foodborne pathogen predominately transmitted through contaminated dried foods and affects populations including neonates, infants, and the elderly. Following several recent outbreaks, it is now a notifiable infection in those under 12 months of age. Current control methods include strict manufacturing guidelines, with monitoring of this genus a legal requirement in powdered infant formula production. Fatty acids have long been known as antimicrobials, with long-chain fatty acids increasingly identified as agents that target virulence factors. This study gives insight into the changes promoted by three long-chain unsaturated fatty acids (oleic, linoleic, and α-linolenic) on <i>C. sakazakii</i> growth, morphology, and biofilm formation. Each fatty acid was individually introduced to <i>C. sakazakii</i> 29544 both as a sole carbon source and as an addition to complex media. Following comparison to the untreated control, bacterial cells treated with these fatty acids showed a significant and media-dependent impact on growth and biofilm inhibition. With further characterization, long-chain fatty acids, including α-linolenic acid, could be utilized as a control method with minimal safety constraints regarding their use in the food production environment.</p>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfs.13130","citationCount":"0","resultStr":"{\"title\":\"Long chain unsaturated fatty acids alter growth and reduce biofilm formation of Cronobacter sakazakii\",\"authors\":\"Katie Phair, David Culliton, Carmel Kealey, Damien Brady\",\"doi\":\"10.1111/jfs.13130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Cronobacter sakazakii</i> is a foodborne pathogen predominately transmitted through contaminated dried foods and affects populations including neonates, infants, and the elderly. Following several recent outbreaks, it is now a notifiable infection in those under 12 months of age. Current control methods include strict manufacturing guidelines, with monitoring of this genus a legal requirement in powdered infant formula production. Fatty acids have long been known as antimicrobials, with long-chain fatty acids increasingly identified as agents that target virulence factors. This study gives insight into the changes promoted by three long-chain unsaturated fatty acids (oleic, linoleic, and α-linolenic) on <i>C. sakazakii</i> growth, morphology, and biofilm formation. Each fatty acid was individually introduced to <i>C. sakazakii</i> 29544 both as a sole carbon source and as an addition to complex media. Following comparison to the untreated control, bacterial cells treated with these fatty acids showed a significant and media-dependent impact on growth and biofilm inhibition. With further characterization, long-chain fatty acids, including α-linolenic acid, could be utilized as a control method with minimal safety constraints regarding their use in the food production environment.</p>\",\"PeriodicalId\":15814,\"journal\":{\"name\":\"Journal of Food Safety\",\"volume\":\"44 3\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfs.13130\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Safety\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13130\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13130","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Long chain unsaturated fatty acids alter growth and reduce biofilm formation of Cronobacter sakazakii
Cronobacter sakazakii is a foodborne pathogen predominately transmitted through contaminated dried foods and affects populations including neonates, infants, and the elderly. Following several recent outbreaks, it is now a notifiable infection in those under 12 months of age. Current control methods include strict manufacturing guidelines, with monitoring of this genus a legal requirement in powdered infant formula production. Fatty acids have long been known as antimicrobials, with long-chain fatty acids increasingly identified as agents that target virulence factors. This study gives insight into the changes promoted by three long-chain unsaturated fatty acids (oleic, linoleic, and α-linolenic) on C. sakazakii growth, morphology, and biofilm formation. Each fatty acid was individually introduced to C. sakazakii 29544 both as a sole carbon source and as an addition to complex media. Following comparison to the untreated control, bacterial cells treated with these fatty acids showed a significant and media-dependent impact on growth and biofilm inhibition. With further characterization, long-chain fatty acids, including α-linolenic acid, could be utilized as a control method with minimal safety constraints regarding their use in the food production environment.
期刊介绍:
The Journal of Food Safety emphasizes mechanistic studies involving inhibition, injury, and metabolism of food poisoning microorganisms, as well as the regulation of growth and toxin production in both model systems and complex food substrates. It also focuses on pathogens which cause food-borne illness, helping readers understand the factors affecting the initial detection of parasites, their development, transmission, and methods of control and destruction.