Jiuqiang Yang, Niantian Lin, Kai Zhang, Lingyun Jia, Chao Fu
{"title":"通过深度学习预测非常规储层含气分布的框架","authors":"Jiuqiang Yang, Niantian Lin, Kai Zhang, Lingyun Jia, Chao Fu","doi":"10.1007/s11053-024-10345-1","DOIUrl":null,"url":null,"abstract":"<p>Multicomponent seismic data can be used to predict unconventional reservoirs; however, this is a challenging task. Although machine learning (ML), particularly deep learning, can be used in this regard, its accuracy in reservoir prediction depends largely on the amount of data available for training and the complexity of the architecture. This study attempted to address this problem using transfer learning (TL) and a compact convolutional neural network with a self-attention mechanism (SACNN). We developed a framework for unconventional reservoir prediction by expanding the data samples and optimizing model performance. First, the synthetic data for both oil and gas reservoirs were used as the source data; their effectiveness was tested using the SACNN model. Subsequently, a real dataset was obtained by optimizing the real multicomponent seismic attributes. The TL dataset was constructed by transferring synthetic gas reservoir data to real dataset. Finally, the constructed SACNN model was used to predict the gas-bearing distribution in tight sandstone gas reservoirs. The results showed the superiority of the proposed model over conventional ML models, with lower error in the unconventional reservoir distribution prediction. Moreover, the proposed model exhibited superior prediction performance (<i>R</i><sup>2</sup> = 0.9731) on the testing dataset compared to models trained solely on synthetic (<i>R</i><sup>2</sup> = 0.9389) and real (<i>R</i><sup>2</sup> = 0.9627) data. Moreover, uncertainty analysis showed that the proposed model is robust and efficient. The proposed framework provides a basis for constructing data-driven models for energy conversion and utilization.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"42 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Framework for Predicting the Gas-Bearing Distribution of Unconventional Reservoirs by Deep Learning\",\"authors\":\"Jiuqiang Yang, Niantian Lin, Kai Zhang, Lingyun Jia, Chao Fu\",\"doi\":\"10.1007/s11053-024-10345-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multicomponent seismic data can be used to predict unconventional reservoirs; however, this is a challenging task. Although machine learning (ML), particularly deep learning, can be used in this regard, its accuracy in reservoir prediction depends largely on the amount of data available for training and the complexity of the architecture. This study attempted to address this problem using transfer learning (TL) and a compact convolutional neural network with a self-attention mechanism (SACNN). We developed a framework for unconventional reservoir prediction by expanding the data samples and optimizing model performance. First, the synthetic data for both oil and gas reservoirs were used as the source data; their effectiveness was tested using the SACNN model. Subsequently, a real dataset was obtained by optimizing the real multicomponent seismic attributes. The TL dataset was constructed by transferring synthetic gas reservoir data to real dataset. Finally, the constructed SACNN model was used to predict the gas-bearing distribution in tight sandstone gas reservoirs. The results showed the superiority of the proposed model over conventional ML models, with lower error in the unconventional reservoir distribution prediction. Moreover, the proposed model exhibited superior prediction performance (<i>R</i><sup>2</sup> = 0.9731) on the testing dataset compared to models trained solely on synthetic (<i>R</i><sup>2</sup> = 0.9389) and real (<i>R</i><sup>2</sup> = 0.9627) data. Moreover, uncertainty analysis showed that the proposed model is robust and efficient. The proposed framework provides a basis for constructing data-driven models for energy conversion and utilization.</p>\",\"PeriodicalId\":54284,\"journal\":{\"name\":\"Natural Resources Research\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11053-024-10345-1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10345-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
A Framework for Predicting the Gas-Bearing Distribution of Unconventional Reservoirs by Deep Learning
Multicomponent seismic data can be used to predict unconventional reservoirs; however, this is a challenging task. Although machine learning (ML), particularly deep learning, can be used in this regard, its accuracy in reservoir prediction depends largely on the amount of data available for training and the complexity of the architecture. This study attempted to address this problem using transfer learning (TL) and a compact convolutional neural network with a self-attention mechanism (SACNN). We developed a framework for unconventional reservoir prediction by expanding the data samples and optimizing model performance. First, the synthetic data for both oil and gas reservoirs were used as the source data; their effectiveness was tested using the SACNN model. Subsequently, a real dataset was obtained by optimizing the real multicomponent seismic attributes. The TL dataset was constructed by transferring synthetic gas reservoir data to real dataset. Finally, the constructed SACNN model was used to predict the gas-bearing distribution in tight sandstone gas reservoirs. The results showed the superiority of the proposed model over conventional ML models, with lower error in the unconventional reservoir distribution prediction. Moreover, the proposed model exhibited superior prediction performance (R2 = 0.9731) on the testing dataset compared to models trained solely on synthetic (R2 = 0.9389) and real (R2 = 0.9627) data. Moreover, uncertainty analysis showed that the proposed model is robust and efficient. The proposed framework provides a basis for constructing data-driven models for energy conversion and utilization.
期刊介绍:
This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.