用于柔性热电发电机的硅锗层交换合成:全面回顾

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-05-01 DOI:10.1002/aelm.202400130
Kaoru Toko, Shintaro Maeda, Takamitsu Ishiyama, Koki Nozawa, Masayuki Murata, Takashi Suemasu
{"title":"用于柔性热电发电机的硅锗层交换合成:全面回顾","authors":"Kaoru Toko,&nbsp;Shintaro Maeda,&nbsp;Takamitsu Ishiyama,&nbsp;Koki Nozawa,&nbsp;Masayuki Murata,&nbsp;Takashi Suemasu","doi":"10.1002/aelm.202400130","DOIUrl":null,"url":null,"abstract":"<p>Flexible thermoelectric generators are leading candidates for next-generation energy-harvesting devices. Although SiGe, an environmentally-friendly semiconductor, is the most reliable and widely tested thermoelectric material, it is difficult to form a SiGe layer with high thermoelectric performance at temperatures lower than the heat-proof temperature of flexible plastic films. In this article, the synthesis of SiGe thermoelectric thin films via the metal-induced layer exchange phenomenon is reviewed, from its mechanism to device performance. The selection of metal species allows low-temperature formation (≤500 °C) of p- and n-type SiGe on insulating substrates. Currently, the maximum power factors near room temperature are 850 µW m<sup>−1</sup> K<sup>−2</sup> for p-type Si<sub>0.4</sub>Ge<sub>0.6</sub> and 1000 µW m<sup>−1</sup> K<sup>−2</sup> for n-type Si<sub>0.85</sub>Ge<sub>0.15</sub>. These values are the highest among those of Group IV semiconductor thin films formed at low temperatures. The flexible thermoelectric generator consisting of these p- and n-type SiGe exhibits cross-sectional and planar power densities of ≈3.0 mW cm<sup>−2</sup> and 0.50 µW cm<sup>−2</sup>, respectively, at a temperature difference of 30 K. Finally, the future challenges of layer exchange for improving the performance of flexible thermoelectric generators based on Group IV semiconductors are discussed.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"10 7","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400130","citationCount":"0","resultStr":"{\"title\":\"Layer Exchange Synthesis of SiGe for Flexible Thermoelectric Generators: A Comprehensive Review\",\"authors\":\"Kaoru Toko,&nbsp;Shintaro Maeda,&nbsp;Takamitsu Ishiyama,&nbsp;Koki Nozawa,&nbsp;Masayuki Murata,&nbsp;Takashi Suemasu\",\"doi\":\"10.1002/aelm.202400130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flexible thermoelectric generators are leading candidates for next-generation energy-harvesting devices. Although SiGe, an environmentally-friendly semiconductor, is the most reliable and widely tested thermoelectric material, it is difficult to form a SiGe layer with high thermoelectric performance at temperatures lower than the heat-proof temperature of flexible plastic films. In this article, the synthesis of SiGe thermoelectric thin films via the metal-induced layer exchange phenomenon is reviewed, from its mechanism to device performance. The selection of metal species allows low-temperature formation (≤500 °C) of p- and n-type SiGe on insulating substrates. Currently, the maximum power factors near room temperature are 850 µW m<sup>−1</sup> K<sup>−2</sup> for p-type Si<sub>0.4</sub>Ge<sub>0.6</sub> and 1000 µW m<sup>−1</sup> K<sup>−2</sup> for n-type Si<sub>0.85</sub>Ge<sub>0.15</sub>. These values are the highest among those of Group IV semiconductor thin films formed at low temperatures. The flexible thermoelectric generator consisting of these p- and n-type SiGe exhibits cross-sectional and planar power densities of ≈3.0 mW cm<sup>−2</sup> and 0.50 µW cm<sup>−2</sup>, respectively, at a temperature difference of 30 K. Finally, the future challenges of layer exchange for improving the performance of flexible thermoelectric generators based on Group IV semiconductors are discussed.</p>\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"10 7\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400130\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202400130\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202400130","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

柔性热电发电机是下一代能量收集设备的主要候选材料。虽然 SiGe(一种环保半导体)是最可靠且经过广泛测试的热电材料,但要在低于柔性塑料薄膜耐热温度的条件下形成具有高热电性能的 SiGe 层却十分困难。本文回顾了通过金属诱导层交换现象合成 SiGe 热电薄膜的机理和器件性能。通过选择金属种类,可以在绝缘基底上低温(≤500 °C)形成 p 型和 n 型 SiGe。目前,p 型 Si0.4Ge0.6 在室温附近的最大功率因数为 850 µW m-1 K-2,n 型 Si0.85Ge0.15 为 1000 µW m-1 K-2。这些数值是在低温条件下形成的第 IV 组半导体薄膜中最高的。由这些 p 型和 n 型 SiGe 组成的柔性热电发生器在 30 K 温差下的横截面和平面功率密度分别为 ≈3.0 mW cm-2 和 0.50 µW cm-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Layer Exchange Synthesis of SiGe for Flexible Thermoelectric Generators: A Comprehensive Review

Flexible thermoelectric generators are leading candidates for next-generation energy-harvesting devices. Although SiGe, an environmentally-friendly semiconductor, is the most reliable and widely tested thermoelectric material, it is difficult to form a SiGe layer with high thermoelectric performance at temperatures lower than the heat-proof temperature of flexible plastic films. In this article, the synthesis of SiGe thermoelectric thin films via the metal-induced layer exchange phenomenon is reviewed, from its mechanism to device performance. The selection of metal species allows low-temperature formation (≤500 °C) of p- and n-type SiGe on insulating substrates. Currently, the maximum power factors near room temperature are 850 µW m−1 K−2 for p-type Si0.4Ge0.6 and 1000 µW m−1 K−2 for n-type Si0.85Ge0.15. These values are the highest among those of Group IV semiconductor thin films formed at low temperatures. The flexible thermoelectric generator consisting of these p- and n-type SiGe exhibits cross-sectional and planar power densities of ≈3.0 mW cm−2 and 0.50 µW cm−2, respectively, at a temperature difference of 30 K. Finally, the future challenges of layer exchange for improving the performance of flexible thermoelectric generators based on Group IV semiconductors are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Physical Reservoir Computing Utilizing Ion-Gating Transistors Operating in Electric Double Layer and Redox Mechanisms Single-Cell Membrane Potential Stimulation and Recording by an Electrolyte-Gated Organic Field-Effect Transistor 2D α-In2Se3 Flakes for High Frequency Tunable and Switchable Film Bulk Acoustic Wave Resonators Aqueous Ammonia Sensor with Neuromorphic Detection 3D Nano Hafnium-Based Ferroelectric Memory Vertical Array for High-Density and High-Reliability Logic-In-Memory Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1