Yumeng Li;Yunhe Zhang;Tong Guo;Yu Liu;Yisheng Lv;Wenbo Du
{"title":"多飞机冲突解决的图强化学习","authors":"Yumeng Li;Yunhe Zhang;Tong Guo;Yu Liu;Yisheng Lv;Wenbo Du","doi":"10.1109/TIV.2024.3364652","DOIUrl":null,"url":null,"abstract":"The escalating density of airspace has led to sharply increased conflicts between aircraft. Efficient and scalable conflict resolution methods are crucial to mitigate collision risks. Existing learning-based methods become less effective as the scale of aircraft increases due to their redundant information representations. In this paper, to accommodate the increased airspace density, a novel graph reinforcement learning (GRL) method is presented to efficiently learn deconfliction strategies. A time-evolving conflict graph is exploited to represent the local state of individual aircraft and the global spatiotemporal relationships between them. Equipped with the conflict graph, GRL can efficiently learn deconfliction strategies by selectively aggregating aircraft state information through a multi-head attention-boosted graph neural network. Furthermore, a temporal regularization mechanism is proposed to enhance learning stability in highly dynamic environments. Comprehensive experimental studies have been conducted on an OpenAI Gym-based flight simulator. Compared with the existing state-of-the-art learning-based methods, the results demonstrate that GRL can save much training time while achieving significantly better deconfliction strategies in terms of safety and efficiency metrics. In addition, GRL has a strong power of scalability and robustness with increasing aircraft scale.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"9 3","pages":"4529-4540"},"PeriodicalIF":14.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Reinforcement Learning for Multi-Aircraft Conflict Resolution\",\"authors\":\"Yumeng Li;Yunhe Zhang;Tong Guo;Yu Liu;Yisheng Lv;Wenbo Du\",\"doi\":\"10.1109/TIV.2024.3364652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The escalating density of airspace has led to sharply increased conflicts between aircraft. Efficient and scalable conflict resolution methods are crucial to mitigate collision risks. Existing learning-based methods become less effective as the scale of aircraft increases due to their redundant information representations. In this paper, to accommodate the increased airspace density, a novel graph reinforcement learning (GRL) method is presented to efficiently learn deconfliction strategies. A time-evolving conflict graph is exploited to represent the local state of individual aircraft and the global spatiotemporal relationships between them. Equipped with the conflict graph, GRL can efficiently learn deconfliction strategies by selectively aggregating aircraft state information through a multi-head attention-boosted graph neural network. Furthermore, a temporal regularization mechanism is proposed to enhance learning stability in highly dynamic environments. Comprehensive experimental studies have been conducted on an OpenAI Gym-based flight simulator. Compared with the existing state-of-the-art learning-based methods, the results demonstrate that GRL can save much training time while achieving significantly better deconfliction strategies in terms of safety and efficiency metrics. In addition, GRL has a strong power of scalability and robustness with increasing aircraft scale.\",\"PeriodicalId\":36532,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Vehicles\",\"volume\":\"9 3\",\"pages\":\"4529-4540\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10432995/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10432995/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Graph Reinforcement Learning for Multi-Aircraft Conflict Resolution
The escalating density of airspace has led to sharply increased conflicts between aircraft. Efficient and scalable conflict resolution methods are crucial to mitigate collision risks. Existing learning-based methods become less effective as the scale of aircraft increases due to their redundant information representations. In this paper, to accommodate the increased airspace density, a novel graph reinforcement learning (GRL) method is presented to efficiently learn deconfliction strategies. A time-evolving conflict graph is exploited to represent the local state of individual aircraft and the global spatiotemporal relationships between them. Equipped with the conflict graph, GRL can efficiently learn deconfliction strategies by selectively aggregating aircraft state information through a multi-head attention-boosted graph neural network. Furthermore, a temporal regularization mechanism is proposed to enhance learning stability in highly dynamic environments. Comprehensive experimental studies have been conducted on an OpenAI Gym-based flight simulator. Compared with the existing state-of-the-art learning-based methods, the results demonstrate that GRL can save much training time while achieving significantly better deconfliction strategies in terms of safety and efficiency metrics. In addition, GRL has a strong power of scalability and robustness with increasing aircraft scale.
期刊介绍:
The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges.
Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.