{"title":"加强越南木薯乙醇燃料的可持续生产","authors":"Truong Xuan Do, Tuan Anh Vu","doi":"10.1016/j.egycc.2024.100136","DOIUrl":null,"url":null,"abstract":"<div><p>This study focused on developing a comprehensive model to perform techno-economic analysis and calculate greenhouse gas emissions and net energy balance of cassava-based ethanol production in Vietnam. Four steps were involved in this study: (1) collecting data on the cassava-based ethanol conversion pathway, (2) modeling an ethanol production plant, (3) calculating greenhouse gas emissions and net energy balance, and (4) evaluating economic feasibility. The total capital investment and production cost per liter of ethanol are 0.6 $/l/yr and 0.4 $/l, respectively. The fossil energy consumption and net energy ratio during cultivation, transportation, production, and use of ethanol are 12.4 MJ/l and 1.70, respectively. The total greenhouse gas emissions of cassava-based ethanol production are 1252 gCO<sub>2</sub>eq/l or 59.1 g<sub>CO2eq</sub>/MJ, which equals 63 % of greenhouse gas emissions from gasoline. This finding confirms that cassava-based ethanol can be an alternative fuel based on economic feasibility and environmental benefit by reducing greenhouse gas emissions in Vietnam.</p></div>","PeriodicalId":72914,"journal":{"name":"Energy and climate change","volume":"5 ","pages":"Article 100136"},"PeriodicalIF":5.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing sustainable ethanol fuel production from cassava in Vietnam\",\"authors\":\"Truong Xuan Do, Tuan Anh Vu\",\"doi\":\"10.1016/j.egycc.2024.100136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focused on developing a comprehensive model to perform techno-economic analysis and calculate greenhouse gas emissions and net energy balance of cassava-based ethanol production in Vietnam. Four steps were involved in this study: (1) collecting data on the cassava-based ethanol conversion pathway, (2) modeling an ethanol production plant, (3) calculating greenhouse gas emissions and net energy balance, and (4) evaluating economic feasibility. The total capital investment and production cost per liter of ethanol are 0.6 $/l/yr and 0.4 $/l, respectively. The fossil energy consumption and net energy ratio during cultivation, transportation, production, and use of ethanol are 12.4 MJ/l and 1.70, respectively. The total greenhouse gas emissions of cassava-based ethanol production are 1252 gCO<sub>2</sub>eq/l or 59.1 g<sub>CO2eq</sub>/MJ, which equals 63 % of greenhouse gas emissions from gasoline. This finding confirms that cassava-based ethanol can be an alternative fuel based on economic feasibility and environmental benefit by reducing greenhouse gas emissions in Vietnam.</p></div>\",\"PeriodicalId\":72914,\"journal\":{\"name\":\"Energy and climate change\",\"volume\":\"5 \",\"pages\":\"Article 100136\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and climate change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666278724000126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and climate change","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666278724000126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Enhancing sustainable ethanol fuel production from cassava in Vietnam
This study focused on developing a comprehensive model to perform techno-economic analysis and calculate greenhouse gas emissions and net energy balance of cassava-based ethanol production in Vietnam. Four steps were involved in this study: (1) collecting data on the cassava-based ethanol conversion pathway, (2) modeling an ethanol production plant, (3) calculating greenhouse gas emissions and net energy balance, and (4) evaluating economic feasibility. The total capital investment and production cost per liter of ethanol are 0.6 $/l/yr and 0.4 $/l, respectively. The fossil energy consumption and net energy ratio during cultivation, transportation, production, and use of ethanol are 12.4 MJ/l and 1.70, respectively. The total greenhouse gas emissions of cassava-based ethanol production are 1252 gCO2eq/l or 59.1 gCO2eq/MJ, which equals 63 % of greenhouse gas emissions from gasoline. This finding confirms that cassava-based ethanol can be an alternative fuel based on economic feasibility and environmental benefit by reducing greenhouse gas emissions in Vietnam.