Nicholas Hindley , Stephen J. DeVience , Ella Zhang , Leo L. Cheng , Matthew S. Rosen
{"title":"将遍历系统的间接测量结果映射到突发特性的统计学习框架","authors":"Nicholas Hindley , Stephen J. DeVience , Ella Zhang , Leo L. Cheng , Matthew S. Rosen","doi":"10.1016/j.jmro.2024.100151","DOIUrl":null,"url":null,"abstract":"<div><p>The discovery of novel experimental techniques often lags behind contemporary theoretical understanding. In particular, it can be difficult to establish appropriate measurement protocols without analytic descriptions of the underlying system-of-interest. Here we propose a statistical learning framework that avoids the need for such descriptions for ergodic systems. We validate this framework by using Monte Carlo simulation and deep neural networks to learn a mapping between nuclear magnetic resonance spectra acquired on a novel low-field instrument and proton exchange rates in ethanol-water mixtures. We found that trained networks exhibited normalized-root-mean-square errors of less than 1 % for exchange rates under 150 s<sup>−1</sup> but performed poorly for rates above this range. This differential performance occurred because low-field measurements are indistinguishable from one another for fast exchange. Nonetheless, where a discoverable relationship between indirect measurements and emergent dynamics exists, we demonstrate the possibility of approximating it in an efficient, data-driven manner.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"19 ","pages":"Article 100151"},"PeriodicalIF":2.6240,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441024000062/pdfft?md5=ebd7d5b1fe87c839cb035aefb252dc6b&pid=1-s2.0-S2666441024000062-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A statistical learning framework for mapping indirect measurements of ergodic systems to emergent properties\",\"authors\":\"Nicholas Hindley , Stephen J. DeVience , Ella Zhang , Leo L. Cheng , Matthew S. Rosen\",\"doi\":\"10.1016/j.jmro.2024.100151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The discovery of novel experimental techniques often lags behind contemporary theoretical understanding. In particular, it can be difficult to establish appropriate measurement protocols without analytic descriptions of the underlying system-of-interest. Here we propose a statistical learning framework that avoids the need for such descriptions for ergodic systems. We validate this framework by using Monte Carlo simulation and deep neural networks to learn a mapping between nuclear magnetic resonance spectra acquired on a novel low-field instrument and proton exchange rates in ethanol-water mixtures. We found that trained networks exhibited normalized-root-mean-square errors of less than 1 % for exchange rates under 150 s<sup>−1</sup> but performed poorly for rates above this range. This differential performance occurred because low-field measurements are indistinguishable from one another for fast exchange. Nonetheless, where a discoverable relationship between indirect measurements and emergent dynamics exists, we demonstrate the possibility of approximating it in an efficient, data-driven manner.</p></div>\",\"PeriodicalId\":365,\"journal\":{\"name\":\"Journal of Magnetic Resonance Open\",\"volume\":\"19 \",\"pages\":\"Article 100151\"},\"PeriodicalIF\":2.6240,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666441024000062/pdfft?md5=ebd7d5b1fe87c839cb035aefb252dc6b&pid=1-s2.0-S2666441024000062-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetic Resonance Open\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666441024000062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441024000062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A statistical learning framework for mapping indirect measurements of ergodic systems to emergent properties
The discovery of novel experimental techniques often lags behind contemporary theoretical understanding. In particular, it can be difficult to establish appropriate measurement protocols without analytic descriptions of the underlying system-of-interest. Here we propose a statistical learning framework that avoids the need for such descriptions for ergodic systems. We validate this framework by using Monte Carlo simulation and deep neural networks to learn a mapping between nuclear magnetic resonance spectra acquired on a novel low-field instrument and proton exchange rates in ethanol-water mixtures. We found that trained networks exhibited normalized-root-mean-square errors of less than 1 % for exchange rates under 150 s−1 but performed poorly for rates above this range. This differential performance occurred because low-field measurements are indistinguishable from one another for fast exchange. Nonetheless, where a discoverable relationship between indirect measurements and emergent dynamics exists, we demonstrate the possibility of approximating it in an efficient, data-driven manner.