{"title":"在低温熔盐中通过等离子电解氧化原位引入 Ca/P 以增强涂层的生物相容性","authors":"Yuliy Yuferov, Konstantin Borodianskiy","doi":"10.1016/j.oceram.2024.100602","DOIUrl":null,"url":null,"abstract":"<div><p>Plasma electrolytic oxidation (PEO) is one of the most promising methods for synthesizing ceramic coatings on metallic substrates. Recently, PEO in molten salt electrolytes was found to be advantageous due to overcoming system heating and the formation of contaminants. However, the PEO in molten salt was conducted at a high temperature (T<sub>m</sub>∼220 °C), limiting the introduction of different components such as Ca and P. This study realizes the employment of a low-temperature electrolyte based on a ternary eutectic system of Ca(NO<sub>3</sub>)<sub>2</sub>–NaNO<sub>3</sub>–KNO<sub>3</sub> (T<sub>m</sub>∼130 °C) jointly with the <em>in situ</em> introduction of Ca/P in the form of ammonium dihydrogen phosphate (ADP). The surface morphology, phase and chemical composition, wettability, and anti-corrosion performance were examined. The results indicate improved surface performance with the addition of 1 wt% ADP to the electrolyte. This surface preferably comprises the anatase phase of TiO<sub>2</sub> and exhibits enhanced biocompatibility and corrosion resistance in a biological environment.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266653952400066X/pdfft?md5=a09d62727a2b04ae2f4ef951b1821ed2&pid=1-s2.0-S266653952400066X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ca/P in situ introduction for enhancing coating biocompatibility via plasma electrolytic oxidation in low-temperature molten salt\",\"authors\":\"Yuliy Yuferov, Konstantin Borodianskiy\",\"doi\":\"10.1016/j.oceram.2024.100602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plasma electrolytic oxidation (PEO) is one of the most promising methods for synthesizing ceramic coatings on metallic substrates. Recently, PEO in molten salt electrolytes was found to be advantageous due to overcoming system heating and the formation of contaminants. However, the PEO in molten salt was conducted at a high temperature (T<sub>m</sub>∼220 °C), limiting the introduction of different components such as Ca and P. This study realizes the employment of a low-temperature electrolyte based on a ternary eutectic system of Ca(NO<sub>3</sub>)<sub>2</sub>–NaNO<sub>3</sub>–KNO<sub>3</sub> (T<sub>m</sub>∼130 °C) jointly with the <em>in situ</em> introduction of Ca/P in the form of ammonium dihydrogen phosphate (ADP). The surface morphology, phase and chemical composition, wettability, and anti-corrosion performance were examined. The results indicate improved surface performance with the addition of 1 wt% ADP to the electrolyte. This surface preferably comprises the anatase phase of TiO<sub>2</sub> and exhibits enhanced biocompatibility and corrosion resistance in a biological environment.</p></div>\",\"PeriodicalId\":34140,\"journal\":{\"name\":\"Open Ceramics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266653952400066X/pdfft?md5=a09d62727a2b04ae2f4ef951b1821ed2&pid=1-s2.0-S266653952400066X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266653952400066X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266653952400066X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
摘要
等离子电解氧化(PEO)是在金属基底上合成陶瓷涂层的最有前途的方法之一。最近,人们发现在熔盐电解质中进行 PEO 具有克服系统加热和污染物形成的优势。然而,熔盐中的 PEO 是在高温(Tm∼220 °C)下进行的,限制了 Ca 和 P 等不同成分的引入。本研究实现了基于 Ca(NO3)2-NaNO3-KNO3 三元共晶体系(Tm∼130 °C)的低温电解质的应用,并以磷酸二氢铵(ADP)的形式原位引入了 Ca/P。对表面形貌、相和化学成分、润湿性和防腐蚀性能进行了研究。结果表明,在电解液中添加 1 wt% 的 ADP 后,表面性能得到改善。这种表面最好由二氧化钛的锐钛矿相组成,在生物环境中表现出更强的生物相容性和耐腐蚀性。
Ca/P in situ introduction for enhancing coating biocompatibility via plasma electrolytic oxidation in low-temperature molten salt
Plasma electrolytic oxidation (PEO) is one of the most promising methods for synthesizing ceramic coatings on metallic substrates. Recently, PEO in molten salt electrolytes was found to be advantageous due to overcoming system heating and the formation of contaminants. However, the PEO in molten salt was conducted at a high temperature (Tm∼220 °C), limiting the introduction of different components such as Ca and P. This study realizes the employment of a low-temperature electrolyte based on a ternary eutectic system of Ca(NO3)2–NaNO3–KNO3 (Tm∼130 °C) jointly with the in situ introduction of Ca/P in the form of ammonium dihydrogen phosphate (ADP). The surface morphology, phase and chemical composition, wettability, and anti-corrosion performance were examined. The results indicate improved surface performance with the addition of 1 wt% ADP to the electrolyte. This surface preferably comprises the anatase phase of TiO2 and exhibits enhanced biocompatibility and corrosion resistance in a biological environment.