利用 CNN-BiLSTM 模型进行物联网网络异常分类的双层框架

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Impacts Pub Date : 2024-05-01 DOI:10.1016/j.simpa.2024.100646
Yue Guan, Morteza Noferesti, Naser Ezzati-Jivan
{"title":"利用 CNN-BiLSTM 模型进行物联网网络异常分类的双层框架","authors":"Yue Guan,&nbsp;Morteza Noferesti,&nbsp;Naser Ezzati-Jivan","doi":"10.1016/j.simpa.2024.100646","DOIUrl":null,"url":null,"abstract":"<div><p>The paper introduces ACS-IoT, an Anomaly Classification System for IoT networks, structured as a two-tiered framework. In the first, it employs a decision tree classifier for anomaly detection. In the second, a CNN-BiLSTM model is utilized for more profound analysis and classification of anomaly types. To address data imbalance, SMOTE is used, and feature selection is enhanced with PSO. The approach showcases strong practical applicability in real-world industrial settings, achieving an accuracy of 88%, precision of 89%, recall of 88%, and F1-score of 88% for multi-class classification, surpassing other machine learning approaches by at least 6% in all metrics.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100646"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000344/pdfft?md5=15788ce74802898e90065f9e6dee2a0b&pid=1-s2.0-S2665963824000344-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A two-tiered framework for anomaly classification in IoT networks utilizing CNN-BiLSTM model\",\"authors\":\"Yue Guan,&nbsp;Morteza Noferesti,&nbsp;Naser Ezzati-Jivan\",\"doi\":\"10.1016/j.simpa.2024.100646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper introduces ACS-IoT, an Anomaly Classification System for IoT networks, structured as a two-tiered framework. In the first, it employs a decision tree classifier for anomaly detection. In the second, a CNN-BiLSTM model is utilized for more profound analysis and classification of anomaly types. To address data imbalance, SMOTE is used, and feature selection is enhanced with PSO. The approach showcases strong practical applicability in real-world industrial settings, achieving an accuracy of 88%, precision of 89%, recall of 88%, and F1-score of 88% for multi-class classification, surpassing other machine learning approaches by at least 6% in all metrics.</p></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"20 \",\"pages\":\"Article 100646\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000344/pdfft?md5=15788ce74802898e90065f9e6dee2a0b&pid=1-s2.0-S2665963824000344-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了 ACS-IoT,这是一个用于物联网网络的异常分类系统,采用两层框架结构。首先,它采用决策树分类器进行异常检测。其次,利用 CNN-BiLSTM 模型对异常类型进行更深入的分析和分类。为解决数据不平衡问题,使用了 SMOTE,并通过 PSO 加强了特征选择。该方法在现实世界的工业环境中具有很强的实用性,多类分类的准确率达到 88%,精确率达到 89%,召回率达到 88%,F1 分数达到 88%,在所有指标上都比其他机器学习方法高出至少 6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A two-tiered framework for anomaly classification in IoT networks utilizing CNN-BiLSTM model

The paper introduces ACS-IoT, an Anomaly Classification System for IoT networks, structured as a two-tiered framework. In the first, it employs a decision tree classifier for anomaly detection. In the second, a CNN-BiLSTM model is utilized for more profound analysis and classification of anomaly types. To address data imbalance, SMOTE is used, and feature selection is enhanced with PSO. The approach showcases strong practical applicability in real-world industrial settings, achieving an accuracy of 88%, precision of 89%, recall of 88%, and F1-score of 88% for multi-class classification, surpassing other machine learning approaches by at least 6% in all metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
期刊最新文献
mGFD: CloudGenerator SlabCutOpt: A code for ornamental stone slab cut optimization LandSin: A differential ML and google API-enabled web server for real-time land insights and beyond EnhancedBERT: A python software tailored for arabic word sense disambiguation PostgreSQL: Relational database structures application on capacitated lot-sizing for pharmaceutical tablets manufacturing processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1