使用 BERT、MTM LSTM 和 DT 进行有效的文本分类

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Data & Knowledge Engineering Pub Date : 2024-05-01 DOI:10.1016/j.datak.2024.102306
Saman Jamshidi , Mahin Mohammadi , Saeed Bagheri , Hamid Esmaeili Najafabadi , Alireza Rezvanian , Mehdi Gheisari , Mustafa Ghaderzadeh , Amir Shahab Shahabi , Zongda Wu
{"title":"使用 BERT、MTM LSTM 和 DT 进行有效的文本分类","authors":"Saman Jamshidi ,&nbsp;Mahin Mohammadi ,&nbsp;Saeed Bagheri ,&nbsp;Hamid Esmaeili Najafabadi ,&nbsp;Alireza Rezvanian ,&nbsp;Mehdi Gheisari ,&nbsp;Mustafa Ghaderzadeh ,&nbsp;Amir Shahab Shahabi ,&nbsp;Zongda Wu","doi":"10.1016/j.datak.2024.102306","DOIUrl":null,"url":null,"abstract":"<div><p>Text classification plays a critical role in managing large volumes of electronically produced texts. As the number of such texts increases, manual analysis becomes impractical, necessitating an intelligent approach for processing information. Deep learning models have witnessed widespread application in text classification, including the use of recurrent neural networks like Many to One Long Short-Term Memory (MTO LSTM). Nonetheless, this model is limited by its reliance on only the last token for text labelling. To overcome this limitation, this study introduces a novel hybrid model that combines Bidirectional Encoder Representations from Transformers (BERT), Many To Many Long Short-Term Memory (MTM LSTM), and Decision Templates (DT) for text classification. In this new model, the text is first embedded using the BERT model and then trained using MTM LSTM to approximate the target at each token. Finally, the approximations are fused using DT. The proposed model is evaluated using the well-known IMDB movie review dataset for binary classification and Drug Review Dataset for multiclass classification. The results demonstrate superior performance in terms of accuracy, recall, precision, and F1 score compared to previous models. The hybrid model presented in this study holds significant potential for a wide range of text classification tasks and stands as a valuable contribution to the field.</p></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"151 ","pages":"Article 102306"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective text classification using BERT, MTM LSTM, and DT\",\"authors\":\"Saman Jamshidi ,&nbsp;Mahin Mohammadi ,&nbsp;Saeed Bagheri ,&nbsp;Hamid Esmaeili Najafabadi ,&nbsp;Alireza Rezvanian ,&nbsp;Mehdi Gheisari ,&nbsp;Mustafa Ghaderzadeh ,&nbsp;Amir Shahab Shahabi ,&nbsp;Zongda Wu\",\"doi\":\"10.1016/j.datak.2024.102306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Text classification plays a critical role in managing large volumes of electronically produced texts. As the number of such texts increases, manual analysis becomes impractical, necessitating an intelligent approach for processing information. Deep learning models have witnessed widespread application in text classification, including the use of recurrent neural networks like Many to One Long Short-Term Memory (MTO LSTM). Nonetheless, this model is limited by its reliance on only the last token for text labelling. To overcome this limitation, this study introduces a novel hybrid model that combines Bidirectional Encoder Representations from Transformers (BERT), Many To Many Long Short-Term Memory (MTM LSTM), and Decision Templates (DT) for text classification. In this new model, the text is first embedded using the BERT model and then trained using MTM LSTM to approximate the target at each token. Finally, the approximations are fused using DT. The proposed model is evaluated using the well-known IMDB movie review dataset for binary classification and Drug Review Dataset for multiclass classification. The results demonstrate superior performance in terms of accuracy, recall, precision, and F1 score compared to previous models. The hybrid model presented in this study holds significant potential for a wide range of text classification tasks and stands as a valuable contribution to the field.</p></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"151 \",\"pages\":\"Article 102306\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24000302\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24000302","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

文本分类在管理大量电子文本方面发挥着至关重要的作用。随着此类文本数量的增加,人工分析变得不切实际,因此需要一种智能方法来处理信息。深度学习模型在文本分类中得到了广泛应用,包括使用多对一长短时记忆(MTO LSTM)等递归神经网络。然而,这种模型的局限性在于仅依赖最后一个标记进行文本标注。为了克服这一局限,本研究引入了一种新型混合模型,该模型结合了变压器双向编码器表征(BERT)、多对多长短期记忆(MTM LSTM)和决策模板(DT),用于文本分类。在这个新模型中,首先使用 BERT 模型嵌入文本,然后使用 MTM LSTM 进行训练,以近似每个标记的目标。最后,使用 DT 对近似值进行融合。我们使用著名的 IMDB 电影评论数据集进行了二分类评估,并使用药物评论数据集进行了多分类评估。结果表明,与之前的模型相比,该模型在准确率、召回率、精确度和 F1 分数等方面都表现出色。本研究提出的混合模型在广泛的文本分类任务中具有巨大的潜力,是对该领域的宝贵贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective text classification using BERT, MTM LSTM, and DT

Text classification plays a critical role in managing large volumes of electronically produced texts. As the number of such texts increases, manual analysis becomes impractical, necessitating an intelligent approach for processing information. Deep learning models have witnessed widespread application in text classification, including the use of recurrent neural networks like Many to One Long Short-Term Memory (MTO LSTM). Nonetheless, this model is limited by its reliance on only the last token for text labelling. To overcome this limitation, this study introduces a novel hybrid model that combines Bidirectional Encoder Representations from Transformers (BERT), Many To Many Long Short-Term Memory (MTM LSTM), and Decision Templates (DT) for text classification. In this new model, the text is first embedded using the BERT model and then trained using MTM LSTM to approximate the target at each token. Finally, the approximations are fused using DT. The proposed model is evaluated using the well-known IMDB movie review dataset for binary classification and Drug Review Dataset for multiclass classification. The results demonstrate superior performance in terms of accuracy, recall, precision, and F1 score compared to previous models. The hybrid model presented in this study holds significant potential for a wide range of text classification tasks and stands as a valuable contribution to the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
期刊最新文献
White box specification of intervention policies for prescriptive process monitoring A goal-oriented document-grounded dialogue based on evidence generation Data-aware process models: From soundness checking to repair Context normalization: A new approach for the stability and improvement of neural network performance An assessment taxonomy for self-adaptation business process solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1