{"title":"利用氧化锡和硫化锌的基于表面等离子体共振的光纤传感器:实验分析","authors":"Vicky Kapoor, Navneet K. Sharma","doi":"10.1002/sia.7317","DOIUrl":null,"url":null,"abstract":"Surface plasmon resonance‐based fiber optic sensors with Ag‐SnO<jats:sub>2</jats:sub> and Ag‐ZnS bi‐layers are proposed experimentally and compared in detail in terms of sensitivity. Effect of SnO<jats:sub>2</jats:sub> and ZnS layer thicknesses on the sensitivity is examined. Largest sensitivities are achieved by sensors with 40 nm Ag‐10 nm SnO<jats:sub>2</jats:sub> layers and 40 nm Ag‐10 nm ZnS layers. Sensor with 40 nm Ag‐10 nm SnO<jats:sub>2</jats:sub> layers is found to demonstrate better sensitivity than that with 40 nm Ag‐10 nm ZnS layers.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"87 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface plasmon resonance‐based fiber optic sensor utilizing tin oxide and zinc sulfide: An experimental analysis\",\"authors\":\"Vicky Kapoor, Navneet K. Sharma\",\"doi\":\"10.1002/sia.7317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface plasmon resonance‐based fiber optic sensors with Ag‐SnO<jats:sub>2</jats:sub> and Ag‐ZnS bi‐layers are proposed experimentally and compared in detail in terms of sensitivity. Effect of SnO<jats:sub>2</jats:sub> and ZnS layer thicknesses on the sensitivity is examined. Largest sensitivities are achieved by sensors with 40 nm Ag‐10 nm SnO<jats:sub>2</jats:sub> layers and 40 nm Ag‐10 nm ZnS layers. Sensor with 40 nm Ag‐10 nm SnO<jats:sub>2</jats:sub> layers is found to demonstrate better sensitivity than that with 40 nm Ag‐10 nm ZnS layers.\",\"PeriodicalId\":22062,\"journal\":{\"name\":\"Surface and Interface Analysis\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface and Interface Analysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/sia.7317\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7317","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Surface plasmon resonance‐based fiber optic sensor utilizing tin oxide and zinc sulfide: An experimental analysis
Surface plasmon resonance‐based fiber optic sensors with Ag‐SnO2 and Ag‐ZnS bi‐layers are proposed experimentally and compared in detail in terms of sensitivity. Effect of SnO2 and ZnS layer thicknesses on the sensitivity is examined. Largest sensitivities are achieved by sensors with 40 nm Ag‐10 nm SnO2 layers and 40 nm Ag‐10 nm ZnS layers. Sensor with 40 nm Ag‐10 nm SnO2 layers is found to demonstrate better sensitivity than that with 40 nm Ag‐10 nm ZnS layers.
期刊介绍:
Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).