Chao‐Jun Chen, Yi‐Nong Li, Hong‐Li Wang, Ke Lu, Zhi Zheng, Hao Yuan, Jian‐Ping Liang, Wen‐Chun Wang, Li‐Ping Han, De‐Zheng Yang
{"title":"用于高效去除液体中低浓度双酚 A 的纳秒脉冲放电等离子体改性多孔聚合物吸附材料","authors":"Chao‐Jun Chen, Yi‐Nong Li, Hong‐Li Wang, Ke Lu, Zhi Zheng, Hao Yuan, Jian‐Ping Liang, Wen‐Chun Wang, Li‐Ping Han, De‐Zheng Yang","doi":"10.1002/ppap.202400021","DOIUrl":null,"url":null,"abstract":"The efficient removal of low‐concentration endocrine disruptors is crucial for the protection of the aquatic environment. In this study, porous polymer adsorbent materials were modified by nanosecond pulsed discharge plasma to achieve efficient adsorption of low‐concentration bisphenol A (BPA). The removal efficiency of BPA reached 99% after 10 min of plasma modification at a pulse peak voltage of 28 kV, which increased by 25.8% compared to the raw materials. This enhancement was attributed to the increase of active sites and oxygen‐containing functional groups. The adsorption behaviors of the porous polymer materials were primarily dominated by monolayer chemisorption. Subsequently, comparative experiments further verified the high‐efficiency adsorption performance of porous polymer materials after plasma treatment.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"86 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanosecond pulsed discharge plasma modified porous polymer adsorbent materials for efficient removal of low‐concentration bisphenol A in liquid\",\"authors\":\"Chao‐Jun Chen, Yi‐Nong Li, Hong‐Li Wang, Ke Lu, Zhi Zheng, Hao Yuan, Jian‐Ping Liang, Wen‐Chun Wang, Li‐Ping Han, De‐Zheng Yang\",\"doi\":\"10.1002/ppap.202400021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficient removal of low‐concentration endocrine disruptors is crucial for the protection of the aquatic environment. In this study, porous polymer adsorbent materials were modified by nanosecond pulsed discharge plasma to achieve efficient adsorption of low‐concentration bisphenol A (BPA). The removal efficiency of BPA reached 99% after 10 min of plasma modification at a pulse peak voltage of 28 kV, which increased by 25.8% compared to the raw materials. This enhancement was attributed to the increase of active sites and oxygen‐containing functional groups. The adsorption behaviors of the porous polymer materials were primarily dominated by monolayer chemisorption. Subsequently, comparative experiments further verified the high‐efficiency adsorption performance of porous polymer materials after plasma treatment.\",\"PeriodicalId\":20135,\"journal\":{\"name\":\"Plasma Processes and Polymers\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Processes and Polymers\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/ppap.202400021\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202400021","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Nanosecond pulsed discharge plasma modified porous polymer adsorbent materials for efficient removal of low‐concentration bisphenol A in liquid
The efficient removal of low‐concentration endocrine disruptors is crucial for the protection of the aquatic environment. In this study, porous polymer adsorbent materials were modified by nanosecond pulsed discharge plasma to achieve efficient adsorption of low‐concentration bisphenol A (BPA). The removal efficiency of BPA reached 99% after 10 min of plasma modification at a pulse peak voltage of 28 kV, which increased by 25.8% compared to the raw materials. This enhancement was attributed to the increase of active sites and oxygen‐containing functional groups. The adsorption behaviors of the porous polymer materials were primarily dominated by monolayer chemisorption. Subsequently, comparative experiments further verified the high‐efficiency adsorption performance of porous polymer materials after plasma treatment.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.