利用标记格罗莫夫-瓦瑟斯坦最优传输进行跨模态匹配和扰动响应预测

Jayoung Ryu, Romain Lopez, Charlotte Bunne, Aviv Regev
{"title":"利用标记格罗莫夫-瓦瑟斯坦最优传输进行跨模态匹配和扰动响应预测","authors":"Jayoung Ryu, Romain Lopez, Charlotte Bunne, Aviv Regev","doi":"arxiv-2405.00838","DOIUrl":null,"url":null,"abstract":"It is now possible to conduct large scale perturbation screens with complex\nreadout modalities, such as different molecular profiles or high content cell\nimages. While these open the way for systematic dissection of causal cell\ncircuits, integrated such data across screens to maximize our ability to\npredict circuits poses substantial computational challenges, which have not\nbeen addressed. Here, we extend two Gromov-Wasserstein Optimal Transport\nmethods to incorporate the perturbation label for cross-modality alignment. The\nobtained alignment is then employed to train a predictive model that estimates\ncellular responses to perturbations observed with only one measurement\nmodality. We validate our method for the tasks of cross-modality alignment and\ncross-modality prediction in a recent multi-modal single-cell perturbation\ndataset. Our approach opens the way to unified causal models of cell biology.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-modality Matching and Prediction of Perturbation Responses with Labeled Gromov-Wasserstein Optimal Transport\",\"authors\":\"Jayoung Ryu, Romain Lopez, Charlotte Bunne, Aviv Regev\",\"doi\":\"arxiv-2405.00838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is now possible to conduct large scale perturbation screens with complex\\nreadout modalities, such as different molecular profiles or high content cell\\nimages. While these open the way for systematic dissection of causal cell\\ncircuits, integrated such data across screens to maximize our ability to\\npredict circuits poses substantial computational challenges, which have not\\nbeen addressed. Here, we extend two Gromov-Wasserstein Optimal Transport\\nmethods to incorporate the perturbation label for cross-modality alignment. The\\nobtained alignment is then employed to train a predictive model that estimates\\ncellular responses to perturbations observed with only one measurement\\nmodality. We validate our method for the tasks of cross-modality alignment and\\ncross-modality prediction in a recent multi-modal single-cell perturbation\\ndataset. Our approach opens the way to unified causal models of cell biology.\",\"PeriodicalId\":501070,\"journal\":{\"name\":\"arXiv - QuanBio - Genomics\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.00838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.00838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现在可以利用复杂的读出模式(如不同的分子图谱或高含量细胞图像)进行大规模扰动筛选。虽然这些方法为系统地剖析因果细胞回路开辟了道路,但在筛选过程中整合这些数据以最大限度地提高我们预测回路的能力,在计算方面提出了巨大的挑战,而这些挑战尚未得到解决。在这里,我们扩展了两种格罗莫夫-瓦瑟斯坦最优传输方法,将扰动标签纳入跨模态配准。然后利用获得的配准来训练一个预测模型,该模型可以估计细胞对仅用一种测量模式观察到的扰动的反应。我们在最近的多模态单细胞扰动数据集中验证了我们的方法在跨模态配准和跨模态预测任务中的有效性。我们的方法为细胞生物学的统一因果模型开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-modality Matching and Prediction of Perturbation Responses with Labeled Gromov-Wasserstein Optimal Transport
It is now possible to conduct large scale perturbation screens with complex readout modalities, such as different molecular profiles or high content cell images. While these open the way for systematic dissection of causal cell circuits, integrated such data across screens to maximize our ability to predict circuits poses substantial computational challenges, which have not been addressed. Here, we extend two Gromov-Wasserstein Optimal Transport methods to incorporate the perturbation label for cross-modality alignment. The obtained alignment is then employed to train a predictive model that estimates cellular responses to perturbations observed with only one measurement modality. We validate our method for the tasks of cross-modality alignment and cross-modality prediction in a recent multi-modal single-cell perturbation dataset. Our approach opens the way to unified causal models of cell biology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Allium Vegetables Intake and Digestive System Cancer Risk: A Study Based on Mendelian Randomization, Network Pharmacology and Molecular Docking wgatools: an ultrafast toolkit for manipulating whole genome alignments Selecting Differential Splicing Methods: Practical Considerations Advancements in colored k-mer sets: essentials for the curious Advancements in practical k-mer sets: essentials for the curious
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1