利用 CLDAS 数据建立基于机器学习的中国臭氧污染实时无间隙昼夜循环运行模型

IF 8.9 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Environmental Science & Technology Letters Environ. Pub Date : 2024-04-29 DOI:10.1021/acs.estlett.4c00106
Nanxuan Shang, Ke Gui*, Fugang Li, Baoxin Li, Xutao Zhang, Zhaoliang Zeng, Yu Zheng, Lei Li, Ye Fei, Yue Peng, Hengheng Zhao, Wenrui Yao, Yurun Liu, Hong Wang, Zhili Wang, Yaqiang Wang, Huizheng Che* and Xiaoye Zhang, 
{"title":"利用 CLDAS 数据建立基于机器学习的中国臭氧污染实时无间隙昼夜循环运行模型","authors":"Nanxuan Shang,&nbsp;Ke Gui*,&nbsp;Fugang Li,&nbsp;Baoxin Li,&nbsp;Xutao Zhang,&nbsp;Zhaoliang Zeng,&nbsp;Yu Zheng,&nbsp;Lei Li,&nbsp;Ye Fei,&nbsp;Yue Peng,&nbsp;Hengheng Zhao,&nbsp;Wenrui Yao,&nbsp;Yurun Liu,&nbsp;Hong Wang,&nbsp;Zhili Wang,&nbsp;Yaqiang Wang,&nbsp;Huizheng Che* and Xiaoye Zhang,&nbsp;","doi":"10.1021/acs.estlett.4c00106","DOIUrl":null,"url":null,"abstract":"<p >An operational real-time surface ozone (O<sub>3</sub>) retrieval (RT-SOR) model was developed that can provide a gapless diurnal cycle of O<sub>3</sub> retrievals with a spatial resolution of 6.25 km by integrating Chinese Land Data Assimilation System (CLDAS) data and multisource auxiliary information. The model robustly captures the hourly O<sub>3</sub> variability, with a sample-based (station-based) cross-validation <i>R</i><sup>2</sup> of 0.88 (0.85) and RMSE of 14.3 μg/m<sup>3</sup> (16.1 μg/m<sup>3</sup>). An additional hindcast-validation experiment demonstrated that the generalization ability of the model is robust (<i>R</i><sup>2</sup> = 0.75; RMSE = 21.9 μg/m<sup>3</sup>). Compared with previous studies, the model performs comparably or even better at the daily scale and fills the gaps in terms of missing hourly O<sub>3</sub> data within the 24-hour cycle. More importantly, underpinned by the RT availability of CLDAS data, the hourly concentration of O<sub>3</sub> can be updated in RT, which is expected to advance our understanding of the diurnal cycle of O<sub>3</sub> pollution in China.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 6","pages":"553–559"},"PeriodicalIF":8.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward an Operational Machine-Learning-Based Model for Deriving the Real-Time Gapless Diurnal Cycle of Ozone Pollution in China with CLDAS Data\",\"authors\":\"Nanxuan Shang,&nbsp;Ke Gui*,&nbsp;Fugang Li,&nbsp;Baoxin Li,&nbsp;Xutao Zhang,&nbsp;Zhaoliang Zeng,&nbsp;Yu Zheng,&nbsp;Lei Li,&nbsp;Ye Fei,&nbsp;Yue Peng,&nbsp;Hengheng Zhao,&nbsp;Wenrui Yao,&nbsp;Yurun Liu,&nbsp;Hong Wang,&nbsp;Zhili Wang,&nbsp;Yaqiang Wang,&nbsp;Huizheng Che* and Xiaoye Zhang,&nbsp;\",\"doi\":\"10.1021/acs.estlett.4c00106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >An operational real-time surface ozone (O<sub>3</sub>) retrieval (RT-SOR) model was developed that can provide a gapless diurnal cycle of O<sub>3</sub> retrievals with a spatial resolution of 6.25 km by integrating Chinese Land Data Assimilation System (CLDAS) data and multisource auxiliary information. The model robustly captures the hourly O<sub>3</sub> variability, with a sample-based (station-based) cross-validation <i>R</i><sup>2</sup> of 0.88 (0.85) and RMSE of 14.3 μg/m<sup>3</sup> (16.1 μg/m<sup>3</sup>). An additional hindcast-validation experiment demonstrated that the generalization ability of the model is robust (<i>R</i><sup>2</sup> = 0.75; RMSE = 21.9 μg/m<sup>3</sup>). Compared with previous studies, the model performs comparably or even better at the daily scale and fills the gaps in terms of missing hourly O<sub>3</sub> data within the 24-hour cycle. More importantly, underpinned by the RT availability of CLDAS data, the hourly concentration of O<sub>3</sub> can be updated in RT, which is expected to advance our understanding of the diurnal cycle of O<sub>3</sub> pollution in China.</p>\",\"PeriodicalId\":37,\"journal\":{\"name\":\"Environmental Science & Technology Letters Environ.\",\"volume\":\"11 6\",\"pages\":\"553–559\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science & Technology Letters Environ.\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00106\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00106","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

通过整合中国陆地数据同化系统(CLDAS)数据和多源辅助信息,开发了一种可运行的实时地表臭氧(O3)检索(RT-SOR)模式,可提供空间分辨率为 6.25 km 的无间隙昼夜循环 O3 检索。该模式能够稳健地捕捉每小时的臭氧变化,基于样本(基于站点)的交叉验证 R2 为 0.88(0.85),RMSE 为 14.3 μg/m3(16.1 μg/m3)。另一项后报验证实验表明,该模型的概括能力很强(R2 = 0.75;RMSE = 21.9 μg/m3)。与之前的研究相比,该模型在日尺度上的表现相当甚至更好,填补了 24 小时周期内每小时臭氧数据缺失的空白。更重要的是,在CLDAS数据RT可用性的支持下,O3的小时浓度可以在RT中更新,这有望推进我们对中国O3污染昼夜周期的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward an Operational Machine-Learning-Based Model for Deriving the Real-Time Gapless Diurnal Cycle of Ozone Pollution in China with CLDAS Data

An operational real-time surface ozone (O3) retrieval (RT-SOR) model was developed that can provide a gapless diurnal cycle of O3 retrievals with a spatial resolution of 6.25 km by integrating Chinese Land Data Assimilation System (CLDAS) data and multisource auxiliary information. The model robustly captures the hourly O3 variability, with a sample-based (station-based) cross-validation R2 of 0.88 (0.85) and RMSE of 14.3 μg/m3 (16.1 μg/m3). An additional hindcast-validation experiment demonstrated that the generalization ability of the model is robust (R2 = 0.75; RMSE = 21.9 μg/m3). Compared with previous studies, the model performs comparably or even better at the daily scale and fills the gaps in terms of missing hourly O3 data within the 24-hour cycle. More importantly, underpinned by the RT availability of CLDAS data, the hourly concentration of O3 can be updated in RT, which is expected to advance our understanding of the diurnal cycle of O3 pollution in China.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science & Technology Letters Environ.
Environmental Science & Technology Letters Environ. ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
17.90
自引率
3.70%
发文量
163
期刊介绍: Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Materials Science and Environmental Applicability Estimation of the Volatility and Apparent Activity Coefficient of Levoglucosan in Wood-Burning Organic Aerosols Estimation of the Volatility and Apparent Activity Coefficient of Levoglucosan in Wood-Burning Organic Aerosols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1