FedSteg:基于无掩码隐写术的隐私保护分散式联合学习

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IEEJ Transactions on Electrical and Electronic Engineering Pub Date : 2024-04-29 DOI:10.1002/tee.24085
Mengfan Xu, Yaguang Lin
{"title":"FedSteg:基于无掩码隐写术的隐私保护分散式联合学习","authors":"Mengfan Xu,&nbsp;Yaguang Lin","doi":"10.1002/tee.24085","DOIUrl":null,"url":null,"abstract":"<p>Federated learning (FL) represents a novel privacy-preserving learning paradigm that offers a practical solution for distributed privacy preservation. Although privacy-preserving FL based on homomorphic encryption (HE-PPFL) exhibits resistance to gradient leakage attacks while ensuring the accuracy of aggregation results, its widespread adoption in blockchain privacy preservation is hindered by the reliance on a trusted key generation center and secure transfer channels. Conversely, coverless steganography schemes effectively ensure the covert transmission of sensitive information across insecure channels. However, their incompatibility with HE-PPFL arises from the lossy extraction process. To address these challenges, we present a decentralized federated learning privacy-preserving framework based on the Lifted ElGamal threshold decryption cryptosystem. We introduce a reversible steganography method tailored to safeguard gradient privacy. Furthermore, we introduce a lightweight, secure blind aggregation algorithm founded on the Raft protocol, which serves to protect gradient privacy while substantially mitigating computational overhead. Finally, we provide rigorous theoretical proof of the security and correctness of our proposed scheme. Experimental results from four public data sets demonstrate that our proposed scheme achieves a 100% extraction accuracy without the need for lossless methods, while simultaneously reducing the computational cost of ciphertext gradient aggregation by at least three orders of magnitude. The FedSteg framework is publicly accessible at \nhttps://github.com/Xumeili/FedSteg. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.</p>","PeriodicalId":13435,"journal":{"name":"IEEJ Transactions on Electrical and Electronic Engineering","volume":"19 8","pages":"1345-1359"},"PeriodicalIF":1.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FedSteg: Coverless Steganography-Based Privacy-Preserving Decentralized Federated Learning\",\"authors\":\"Mengfan Xu,&nbsp;Yaguang Lin\",\"doi\":\"10.1002/tee.24085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Federated learning (FL) represents a novel privacy-preserving learning paradigm that offers a practical solution for distributed privacy preservation. Although privacy-preserving FL based on homomorphic encryption (HE-PPFL) exhibits resistance to gradient leakage attacks while ensuring the accuracy of aggregation results, its widespread adoption in blockchain privacy preservation is hindered by the reliance on a trusted key generation center and secure transfer channels. Conversely, coverless steganography schemes effectively ensure the covert transmission of sensitive information across insecure channels. However, their incompatibility with HE-PPFL arises from the lossy extraction process. To address these challenges, we present a decentralized federated learning privacy-preserving framework based on the Lifted ElGamal threshold decryption cryptosystem. We introduce a reversible steganography method tailored to safeguard gradient privacy. Furthermore, we introduce a lightweight, secure blind aggregation algorithm founded on the Raft protocol, which serves to protect gradient privacy while substantially mitigating computational overhead. Finally, we provide rigorous theoretical proof of the security and correctness of our proposed scheme. Experimental results from four public data sets demonstrate that our proposed scheme achieves a 100% extraction accuracy without the need for lossless methods, while simultaneously reducing the computational cost of ciphertext gradient aggregation by at least three orders of magnitude. The FedSteg framework is publicly accessible at \\nhttps://github.com/Xumeili/FedSteg. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.</p>\",\"PeriodicalId\":13435,\"journal\":{\"name\":\"IEEJ Transactions on Electrical and Electronic Engineering\",\"volume\":\"19 8\",\"pages\":\"1345-1359\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEJ Transactions on Electrical and Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tee.24085\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEJ Transactions on Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tee.24085","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

联合学习(FL)代表了一种新颖的隐私保护学习范式,为分布式隐私保护提供了一种实用的解决方案。虽然基于同态加密的隐私保护 FL(HE-PPFL)可抵御梯度泄漏攻击,同时确保聚合结果的准确性,但其在区块链隐私保护中的广泛应用因依赖可信密钥生成中心和安全传输渠道而受到阻碍。相反,无掩码隐写术方案能有效确保敏感信息在不安全通道上的隐蔽传输。然而,它们与 HE-PPFL 的不兼容性来自于有损提取过程。为了应对这些挑战,我们提出了一种基于 Lifted ElGamal 门限解密密码系统的分散式联合学习隐私保护框架。我们引入了一种为保护梯度隐私而量身定制的可逆隐写方法。此外,我们还介绍了一种建立在 Raft 协议基础上的轻量级安全盲聚合算法,该算法在保护梯度隐私的同时,还大大降低了计算开销。最后,我们对所提方案的安全性和正确性进行了严格的理论证明。四个公开数据集的实验结果表明,我们提出的方案无需无损方法即可实现 100% 的提取准确率,同时将密文梯度聚合的计算成本降低了至少三个数量级。FedSteg 框架可在 https://github.com/Xumeili/FedSteg 上公开访问。© 2024 日本电气工程师学会和 Wiley Periodicals LLC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FedSteg: Coverless Steganography-Based Privacy-Preserving Decentralized Federated Learning

Federated learning (FL) represents a novel privacy-preserving learning paradigm that offers a practical solution for distributed privacy preservation. Although privacy-preserving FL based on homomorphic encryption (HE-PPFL) exhibits resistance to gradient leakage attacks while ensuring the accuracy of aggregation results, its widespread adoption in blockchain privacy preservation is hindered by the reliance on a trusted key generation center and secure transfer channels. Conversely, coverless steganography schemes effectively ensure the covert transmission of sensitive information across insecure channels. However, their incompatibility with HE-PPFL arises from the lossy extraction process. To address these challenges, we present a decentralized federated learning privacy-preserving framework based on the Lifted ElGamal threshold decryption cryptosystem. We introduce a reversible steganography method tailored to safeguard gradient privacy. Furthermore, we introduce a lightweight, secure blind aggregation algorithm founded on the Raft protocol, which serves to protect gradient privacy while substantially mitigating computational overhead. Finally, we provide rigorous theoretical proof of the security and correctness of our proposed scheme. Experimental results from four public data sets demonstrate that our proposed scheme achieves a 100% extraction accuracy without the need for lossless methods, while simultaneously reducing the computational cost of ciphertext gradient aggregation by at least three orders of magnitude. The FedSteg framework is publicly accessible at https://github.com/Xumeili/FedSteg. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEJ Transactions on Electrical and Electronic Engineering
IEEJ Transactions on Electrical and Electronic Engineering 工程技术-工程:电子与电气
CiteScore
2.70
自引率
10.00%
发文量
199
审稿时长
4.3 months
期刊介绍: IEEJ Transactions on Electrical and Electronic Engineering (hereinafter called TEEE ) publishes 6 times per year as an official journal of the Institute of Electrical Engineers of Japan (hereinafter "IEEJ"). This peer-reviewed journal contains original research papers and review articles on the most important and latest technological advances in core areas of Electrical and Electronic Engineering and in related disciplines. The journal also publishes short communications reporting on the results of the latest research activities TEEE ) aims to provide a new forum for IEEJ members in Japan as well as fellow researchers in Electrical and Electronic Engineering from around the world to exchange ideas and research findings.
期刊最新文献
Issue Information Issue Information Studies on Practical Hysteresis Modeling Method Using Play Model by Circuit Simulators String‐Like Self‐Capacitance‐Based Proximity and Tactile Sensor that Can be Wrapped Around Robotic Arms Analysis of Electromagnetic Buffer Characteristics of DC Fast Vacuum Switch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1