利用高通量光遗传平台对光遗传系统进行动态多路复用控制和建模,Lustro

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS ACS Synthetic Biology Pub Date : 2024-04-29 DOI:10.1021/acssynbio.3c00761
Zachary P. Harmer, Jaron C. Thompson, David L. Cole, Ophelia S. Venturelli, Victor M. Zavala and Megan N. McClean*, 
{"title":"利用高通量光遗传平台对光遗传系统进行动态多路复用控制和建模,Lustro","authors":"Zachary P. Harmer,&nbsp;Jaron C. Thompson,&nbsp;David L. Cole,&nbsp;Ophelia S. Venturelli,&nbsp;Victor M. Zavala and Megan N. McClean*,&nbsp;","doi":"10.1021/acssynbio.3c00761","DOIUrl":null,"url":null,"abstract":"<p >The ability to control cellular processes using optogenetics is inducer-limited, with most optogenetic systems responding to blue light. To address this limitation, we leverage an integrated framework combining Lustro, a powerful high-throughput optogenetics platform, and machine learning tools to enable multiplexed control over blue light-sensitive optogenetic systems. Specifically, we identify light induction conditions for sequential activation as well as preferential activation and switching between pairs of light-sensitive split transcription factors in the budding yeast, <i>Saccharomyces cerevisiae</i>. We use the high-throughput data generated from Lustro to build a Bayesian optimization framework that incorporates data-driven learning, uncertainty quantification, and experimental design to enable the prediction of system behavior and the identification of optimal conditions for multiplexed control. This work lays the foundation for designing more advanced synthetic biological circuits incorporating optogenetics, where multiple circuit components can be controlled using designer light induction programs, with broad implications for biotechnology and bioengineering.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acssynbio.3c00761","citationCount":"0","resultStr":"{\"title\":\"Dynamic Multiplexed Control and Modeling of Optogenetic Systems Using the High-Throughput Optogenetic Platform, Lustro\",\"authors\":\"Zachary P. Harmer,&nbsp;Jaron C. Thompson,&nbsp;David L. Cole,&nbsp;Ophelia S. Venturelli,&nbsp;Victor M. Zavala and Megan N. McClean*,&nbsp;\",\"doi\":\"10.1021/acssynbio.3c00761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The ability to control cellular processes using optogenetics is inducer-limited, with most optogenetic systems responding to blue light. To address this limitation, we leverage an integrated framework combining Lustro, a powerful high-throughput optogenetics platform, and machine learning tools to enable multiplexed control over blue light-sensitive optogenetic systems. Specifically, we identify light induction conditions for sequential activation as well as preferential activation and switching between pairs of light-sensitive split transcription factors in the budding yeast, <i>Saccharomyces cerevisiae</i>. We use the high-throughput data generated from Lustro to build a Bayesian optimization framework that incorporates data-driven learning, uncertainty quantification, and experimental design to enable the prediction of system behavior and the identification of optimal conditions for multiplexed control. This work lays the foundation for designing more advanced synthetic biological circuits incorporating optogenetics, where multiple circuit components can be controlled using designer light induction programs, with broad implications for biotechnology and bioengineering.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acssynbio.3c00761\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssynbio.3c00761\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.3c00761","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

利用光遗传学控制细胞过程的能力受到诱导剂的限制,大多数光遗传学系统只能对蓝光做出反应。为了解决这一局限性,我们利用一个集成框架,将功能强大的高通量光遗传学平台 Lustro 与机器学习工具相结合,实现了对蓝光敏感的光遗传学系统的多重控制。具体来说,我们确定了在芽殖酵母(Saccharomyces cerevisiae)中顺序激活以及优先激活和切换成对光敏分裂转录因子的光诱导条件。我们利用 Lustro 生成的高通量数据建立了一个贝叶斯优化框架,该框架结合了数据驱动学习、不确定性量化和实验设计,从而能够预测系统行为并确定多重控制的最佳条件。这项工作为结合光遗传学设计更先进的合成生物电路奠定了基础,在这种电路中,可以使用设计光诱导程序控制多个电路元件,对生物技术和生物工程具有广泛的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Multiplexed Control and Modeling of Optogenetic Systems Using the High-Throughput Optogenetic Platform, Lustro

The ability to control cellular processes using optogenetics is inducer-limited, with most optogenetic systems responding to blue light. To address this limitation, we leverage an integrated framework combining Lustro, a powerful high-throughput optogenetics platform, and machine learning tools to enable multiplexed control over blue light-sensitive optogenetic systems. Specifically, we identify light induction conditions for sequential activation as well as preferential activation and switching between pairs of light-sensitive split transcription factors in the budding yeast, Saccharomyces cerevisiae. We use the high-throughput data generated from Lustro to build a Bayesian optimization framework that incorporates data-driven learning, uncertainty quantification, and experimental design to enable the prediction of system behavior and the identification of optimal conditions for multiplexed control. This work lays the foundation for designing more advanced synthetic biological circuits incorporating optogenetics, where multiple circuit components can be controlled using designer light induction programs, with broad implications for biotechnology and bioengineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
期刊最新文献
Bioinformatic Prediction and High Throughput In Vivo Screening to Identify Cis-Regulatory Elements for the Development of Algal Synthetic Promoters. Cell-Free Translation Quantification via a Fluorescent Minihelix. Directed Evolution of Acoustic Reporter Genes Using High-Throughput Acoustic Screening. Metabolic Profile of the Genome-Reduced Bacillus subtilis Strain IIG-Bs-27-39: An Attractive Chassis for Recombinant Protein Production. AutoBioTech─A Versatile Biofoundry for Automated Strain Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1