鳞翅目:夜蛾科)研究合作网络的战略分析,以改进害虫管理战略

IF 1.4 3区 农林科学 Q2 ENTOMOLOGY Neotropical Entomology Pub Date : 2024-05-01 DOI:10.1007/s13744-024-01146-5
Prajith Karakkottil, Lalsiemlien Pulamte, Vipan Kumar
{"title":"鳞翅目:夜蛾科)研究合作网络的战略分析,以改进害虫管理战略","authors":"Prajith Karakkottil, Lalsiemlien Pulamte, Vipan Kumar","doi":"10.1007/s13744-024-01146-5","DOIUrl":null,"url":null,"abstract":"<p>The fall armyworm (FAW) poses a significant global threat to food security, and economics. Timely detection is crucial, and this research explores innovative techniques like data analysis, remote sensing, satellite imagery, and AI with machine learning algorithms for predicting and managing outbreaks. Emphasizing the importance of community engagement and international collaboration, social network analysis (SNA) is employed to uncover collaborative networks in FAW management research. The study analyzes a decade of research, revealing trends, influential institutions, authors, and countries, providing insights for efficient FAW management strategies. The research highlights a growing interest in <i>Spodoptera frugiperda</i> (Smith and Abbott 1797) research, focusing on biological control, chemical insecticides, plant extracts, and pest resistance. Co-Citation analysis identifies key research concepts, while collaboration analysis emphasizes the contributions of actors and institutions, such as China, the USA, and Brazil, with international collaboration playing a vital role. Current research trends involve evolving resistance, insecticidal protein gene discovery, and bio-control investigations. Leveraging insights from collaborative networks is essential for formulating effective strategies to manage fall armyworm and ensure global food security. This comprehensive analysis serves as a valuable resource for researchers and stakeholders, guiding efforts to combat this pervasive agricultural pest.</p>","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategic Analysis of Collaborative Networks in Spodoptera frugiperda (Lepidoptera: Noctuidae) Research for Improved Pest Management Strategies\",\"authors\":\"Prajith Karakkottil, Lalsiemlien Pulamte, Vipan Kumar\",\"doi\":\"10.1007/s13744-024-01146-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The fall armyworm (FAW) poses a significant global threat to food security, and economics. Timely detection is crucial, and this research explores innovative techniques like data analysis, remote sensing, satellite imagery, and AI with machine learning algorithms for predicting and managing outbreaks. Emphasizing the importance of community engagement and international collaboration, social network analysis (SNA) is employed to uncover collaborative networks in FAW management research. The study analyzes a decade of research, revealing trends, influential institutions, authors, and countries, providing insights for efficient FAW management strategies. The research highlights a growing interest in <i>Spodoptera frugiperda</i> (Smith and Abbott 1797) research, focusing on biological control, chemical insecticides, plant extracts, and pest resistance. Co-Citation analysis identifies key research concepts, while collaboration analysis emphasizes the contributions of actors and institutions, such as China, the USA, and Brazil, with international collaboration playing a vital role. Current research trends involve evolving resistance, insecticidal protein gene discovery, and bio-control investigations. Leveraging insights from collaborative networks is essential for formulating effective strategies to manage fall armyworm and ensure global food security. This comprehensive analysis serves as a valuable resource for researchers and stakeholders, guiding efforts to combat this pervasive agricultural pest.</p>\",\"PeriodicalId\":19071,\"journal\":{\"name\":\"Neotropical Entomology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neotropical Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s13744-024-01146-5\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neotropical Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s13744-024-01146-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

秋虫(FAW)对全球粮食安全和经济构成重大威胁。及时发现至关重要,本研究探索了数据分析、遥感、卫星图像和采用机器学习算法的人工智能等创新技术,用于预测和管理疫情。本研究强调社区参与和国际合作的重要性,并采用社会网络分析(SNA)来揭示干旱和虫害管理研究中的合作网络。该研究对十年来的研究进行了分析,揭示了趋势、有影响力的机构、作者和国家,为制定高效的FAW管理策略提供了见解。研究突出表明,人们对蚜虫(Spodoptera frugiperda,Smith 和 Abbott,1797 年)研究的兴趣与日俱增,重点关注生物防治、化学杀虫剂、植物提取物和害虫抗性。共引分析确定了关键的研究概念,而合作分析则强调了中国、美国和巴西等参与者和机构的贡献,其中国际合作发挥了至关重要的作用。当前的研究趋势涉及抗药性演变、杀虫蛋白基因发现和生物防治调查。利用合作网络的洞察力对于制定有效的战略来管理秋绵虫和确保全球粮食安全至关重要。这份综合分析报告为研究人员和利益相关者提供了宝贵的资源,为防治这种普遍存在的农业害虫提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategic Analysis of Collaborative Networks in Spodoptera frugiperda (Lepidoptera: Noctuidae) Research for Improved Pest Management Strategies

The fall armyworm (FAW) poses a significant global threat to food security, and economics. Timely detection is crucial, and this research explores innovative techniques like data analysis, remote sensing, satellite imagery, and AI with machine learning algorithms for predicting and managing outbreaks. Emphasizing the importance of community engagement and international collaboration, social network analysis (SNA) is employed to uncover collaborative networks in FAW management research. The study analyzes a decade of research, revealing trends, influential institutions, authors, and countries, providing insights for efficient FAW management strategies. The research highlights a growing interest in Spodoptera frugiperda (Smith and Abbott 1797) research, focusing on biological control, chemical insecticides, plant extracts, and pest resistance. Co-Citation analysis identifies key research concepts, while collaboration analysis emphasizes the contributions of actors and institutions, such as China, the USA, and Brazil, with international collaboration playing a vital role. Current research trends involve evolving resistance, insecticidal protein gene discovery, and bio-control investigations. Leveraging insights from collaborative networks is essential for formulating effective strategies to manage fall armyworm and ensure global food security. This comprehensive analysis serves as a valuable resource for researchers and stakeholders, guiding efforts to combat this pervasive agricultural pest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neotropical Entomology
Neotropical Entomology 生物-昆虫学
CiteScore
3.30
自引率
5.60%
发文量
69
审稿时长
6-12 weeks
期刊介绍: Neotropical Entomology is a bimonthly journal, edited by the Sociedade Entomológica do Brasil (Entomological Society of Brazil) that publishes original articles produced by Brazilian and international experts in several subspecialties of entomology. These include bionomics, systematics, morphology, physiology, behavior, ecology, biological control, crop protection and acarology.
期刊最新文献
Neonicotinoid Residues on Filter Paper Lack Insecticidal Activity. Sex dimorphism in pupae and adults of the specialist Ipomoea batatas defoliator Bedellia somnulentella (Lepidoptera: Bedelliidae). Drosophila suzukii (Diptera: Drosophilidae) Population Dynamics and Infestation in a Raspberry Orchard of Loukkos Area, Morocco. Influence of Height on the Abundance and Richness of Green Lacewings (Neuroptera: Chrysopidae) in an Anthropically Modified Habitat. Machine Learning Approach to Support Taxonomic Discrimination of Mayflies Species Based on Morphologic Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1