基于位置超敏感巨型兰姆位移的亚纳米精度光学散射成像

IF 6.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Science China Physics, Mechanics & Astronomy Pub Date : 2024-04-28 DOI:10.1007/s11433-023-2369-6
Zeyang Liao, Yu-Wei Lu, Wei Li, Xue-Hua Wang
{"title":"基于位置超敏感巨型兰姆位移的亚纳米精度光学散射成像","authors":"Zeyang Liao, Yu-Wei Lu, Wei Li, Xue-Hua Wang","doi":"10.1007/s11433-023-2369-6","DOIUrl":null,"url":null,"abstract":"<p>The Lamb shift of a quantum emitter in close proximity to a plasmonic nanostructure can be three or more orders of magnitude larger than that in the free space and is ultra-sensitive to the emitter position and polarization. We demonstrate that this large Lamb shift can be sensitively observed from the scattering or absorption spectrum dip shift of the coupled system when the plasmonic nanoparticle or tip scans the emitter. Using these observations, we propose a scanning optical scattering imaging method based on the plasmonic-enhanced Lamb shift with achieves sub-nanometer resolution. Our method is based on the scattering or absorption spectrum of the plasmon-emitter coupling system, which is free of the fluorescence quenching problem and easier to implement in a plasmon-emitter coupling system. In addition, our scheme works even if the quantum emitter is slightly below the dielectric surface, which can bring about broader applications, such as detecting atoms and molecules or quantum dots above or under a surface.</p>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical scattering imaging with sub-nanometer precision based on position-ultra-sensitive giant Lamb shift\",\"authors\":\"Zeyang Liao, Yu-Wei Lu, Wei Li, Xue-Hua Wang\",\"doi\":\"10.1007/s11433-023-2369-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Lamb shift of a quantum emitter in close proximity to a plasmonic nanostructure can be three or more orders of magnitude larger than that in the free space and is ultra-sensitive to the emitter position and polarization. We demonstrate that this large Lamb shift can be sensitively observed from the scattering or absorption spectrum dip shift of the coupled system when the plasmonic nanoparticle or tip scans the emitter. Using these observations, we propose a scanning optical scattering imaging method based on the plasmonic-enhanced Lamb shift with achieves sub-nanometer resolution. Our method is based on the scattering or absorption spectrum of the plasmon-emitter coupling system, which is free of the fluorescence quenching problem and easier to implement in a plasmon-emitter coupling system. In addition, our scheme works even if the quantum emitter is slightly below the dielectric surface, which can bring about broader applications, such as detecting atoms and molecules or quantum dots above or under a surface.</p>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11433-023-2369-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11433-023-2369-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子发射器在接近等离子纳米结构时的兰姆位移可能比自由空间中的兰姆位移大三个或更多数量级,并且对发射器的位置和偏振极为敏感。我们证明,当等离子纳米粒子或尖端扫描发射器时,可以从耦合系统的散射或吸收光谱倾移中灵敏地观察到这种大的 Lamb 偏移。利用这些观察结果,我们提出了一种基于质子增强兰姆位移的扫描光学散射成像方法,其分辨率可达亚纳米级。我们的方法基于质子发射极耦合系统的散射或吸收光谱,这就避免了荧光淬灭问题,并且更容易在质子发射极耦合系统中实现。此外,即使量子发射器略低于介质表面,我们的方案也能奏效,这将带来更广泛的应用,如探测表面上方或下方的原子、分子或量子点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical scattering imaging with sub-nanometer precision based on position-ultra-sensitive giant Lamb shift

The Lamb shift of a quantum emitter in close proximity to a plasmonic nanostructure can be three or more orders of magnitude larger than that in the free space and is ultra-sensitive to the emitter position and polarization. We demonstrate that this large Lamb shift can be sensitively observed from the scattering or absorption spectrum dip shift of the coupled system when the plasmonic nanoparticle or tip scans the emitter. Using these observations, we propose a scanning optical scattering imaging method based on the plasmonic-enhanced Lamb shift with achieves sub-nanometer resolution. Our method is based on the scattering or absorption spectrum of the plasmon-emitter coupling system, which is free of the fluorescence quenching problem and easier to implement in a plasmon-emitter coupling system. In addition, our scheme works even if the quantum emitter is slightly below the dielectric surface, which can bring about broader applications, such as detecting atoms and molecules or quantum dots above or under a surface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
期刊最新文献
Embedded Majorana islands Lorentz violation induces isospectrality breaking in Einstein-bumblebee gravity theory Frustrated superconductivity and sextetting order Physical neural networks with self-learning capabilities Anomalous negative magnetoresistance in quantum dot Josephson junctions with Kondo correlations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1