Yongwon Jo;Jinsoo Bae;Hansam Cho;Heejoong Roh;Kyunghye Kim;Munki Jo;Jaeung Tae;Seoung Bum Kim
{"title":"噪声和有限晶片透射电子显微镜图像的语义分割","authors":"Yongwon Jo;Jinsoo Bae;Hansam Cho;Heejoong Roh;Kyunghye Kim;Munki Jo;Jaeung Tae;Seoung Bum Kim","doi":"10.1109/TSM.2024.3396423","DOIUrl":null,"url":null,"abstract":"Semantic segmentation for automated measurement in semiconductor manufacturing, specifically with wafer transmission electron microscopy (TEM) images, poses significant challenges because of the difficulty of acquisition, prevalent noise, and ambiguous object boundaries. However, prior studies focused on broadening the application of semantic segmentation for automated measurement without considering the specific intricacies of TEM images. In this study, we propose a wafer TEM images-specific semantic segmentation and transfer learning (WTEM-SST) framework to address these issues. The proposed WTEM-SST involves a pre-training stage, wafer TEM-specific data augmentation methods, and a boundary-focused loss function. The pre-training stage addresses the difficulty of collecting and annotating wafer TEM images, followed by fine-tuning for process-specific segmentation models. Our data augmentation techniques mitigate challenges related to limited training samples, lots of noise, and unclear boundaries. The boundary-focused loss makes the model more precise in boundary recognition during fine-tuning. We demonstrate that WTEM-SST outperforms conventional segmentation models, with our studies highlighting the effectiveness of the three components in WTEM-SST.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 3","pages":"345-354"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Segmentation for Noisy and Limited Wafer Transmission Electron Microscope Images\",\"authors\":\"Yongwon Jo;Jinsoo Bae;Hansam Cho;Heejoong Roh;Kyunghye Kim;Munki Jo;Jaeung Tae;Seoung Bum Kim\",\"doi\":\"10.1109/TSM.2024.3396423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation for automated measurement in semiconductor manufacturing, specifically with wafer transmission electron microscopy (TEM) images, poses significant challenges because of the difficulty of acquisition, prevalent noise, and ambiguous object boundaries. However, prior studies focused on broadening the application of semantic segmentation for automated measurement without considering the specific intricacies of TEM images. In this study, we propose a wafer TEM images-specific semantic segmentation and transfer learning (WTEM-SST) framework to address these issues. The proposed WTEM-SST involves a pre-training stage, wafer TEM-specific data augmentation methods, and a boundary-focused loss function. The pre-training stage addresses the difficulty of collecting and annotating wafer TEM images, followed by fine-tuning for process-specific segmentation models. Our data augmentation techniques mitigate challenges related to limited training samples, lots of noise, and unclear boundaries. The boundary-focused loss makes the model more precise in boundary recognition during fine-tuning. We demonstrate that WTEM-SST outperforms conventional segmentation models, with our studies highlighting the effectiveness of the three components in WTEM-SST.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"37 3\",\"pages\":\"345-354\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10517962/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10517962/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
在半导体制造领域,特别是晶圆透射电子显微镜(TEM)图像的自动测量中,语义分割是一项重大挑战,因为采集困难、噪声普遍存在、物体边界模糊不清。然而,之前的研究侧重于扩大语义分割在自动测量中的应用,却没有考虑到 TEM 图像的特殊复杂性。在本研究中,我们提出了晶圆 TEM 图像特定语义分割和迁移学习(WTEM-SST)框架来解决这些问题。拟议的 WTEM-SST 包括预训练阶段、晶圆 TEM 特定数据增强方法和以边界为重点的损失函数。预训练阶段解决了收集和注释晶圆 TEM 图像的困难,随后对特定于流程的分割模型进行微调。我们的数据增强技术可以缓解训练样本有限、噪音大和边界不清晰等难题。在微调过程中,以边界为重点的损失使模型的边界识别更加精确。我们的研究表明,WTEM-SST 优于传统的分割模型,并突出了 WTEM-SST 中三个组件的有效性。
Semantic Segmentation for Noisy and Limited Wafer Transmission Electron Microscope Images
Semantic segmentation for automated measurement in semiconductor manufacturing, specifically with wafer transmission electron microscopy (TEM) images, poses significant challenges because of the difficulty of acquisition, prevalent noise, and ambiguous object boundaries. However, prior studies focused on broadening the application of semantic segmentation for automated measurement without considering the specific intricacies of TEM images. In this study, we propose a wafer TEM images-specific semantic segmentation and transfer learning (WTEM-SST) framework to address these issues. The proposed WTEM-SST involves a pre-training stage, wafer TEM-specific data augmentation methods, and a boundary-focused loss function. The pre-training stage addresses the difficulty of collecting and annotating wafer TEM images, followed by fine-tuning for process-specific segmentation models. Our data augmentation techniques mitigate challenges related to limited training samples, lots of noise, and unclear boundaries. The boundary-focused loss makes the model more precise in boundary recognition during fine-tuning. We demonstrate that WTEM-SST outperforms conventional segmentation models, with our studies highlighting the effectiveness of the three components in WTEM-SST.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.