{"title":"基于 IGBT 模块电压振铃频率特性的键合丝老化监测方法","authors":"Xiyuan Huang;Mingxing Du;Hongze Fu;Sai Gao","doi":"10.1109/TDMR.2024.3394517","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel online aging monitoring method for bond wires in IGBT modules based on voltage ringing frequency characteristics. The synchronous Buck converter was selected as the IGBT module test system. The influence of the aging degree of upper bridge arm IGBT module on the voltage ringing peak frequency characteristics of the lower bridge arm IGBT module is studied during the switching transient. Considering the influence of junction temperature, power loop wires inductance and driving resistance on the ringing frequency characteristics, this paper measured the standard ringing frequency under the coupling conditions of each factor. Then a standard database under different working conditions is constructed, and the database is used as a criterion to complete the monitoring task. Finally, the converter-level aging monitoring method of bond wires is realized which is non-invasive and real-time. The experimental results show that the proposed method does not need additional equipment, which reduces the complexity of monitoring circuit and has universal applicability.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"344-353"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Aging Monitoring Method of Bond Wires Based on Voltage Ringing Frequency Characteristics in IGBT Modules\",\"authors\":\"Xiyuan Huang;Mingxing Du;Hongze Fu;Sai Gao\",\"doi\":\"10.1109/TDMR.2024.3394517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel online aging monitoring method for bond wires in IGBT modules based on voltage ringing frequency characteristics. The synchronous Buck converter was selected as the IGBT module test system. The influence of the aging degree of upper bridge arm IGBT module on the voltage ringing peak frequency characteristics of the lower bridge arm IGBT module is studied during the switching transient. Considering the influence of junction temperature, power loop wires inductance and driving resistance on the ringing frequency characteristics, this paper measured the standard ringing frequency under the coupling conditions of each factor. Then a standard database under different working conditions is constructed, and the database is used as a criterion to complete the monitoring task. Finally, the converter-level aging monitoring method of bond wires is realized which is non-invasive and real-time. The experimental results show that the proposed method does not need additional equipment, which reduces the complexity of monitoring circuit and has universal applicability.\",\"PeriodicalId\":448,\"journal\":{\"name\":\"IEEE Transactions on Device and Materials Reliability\",\"volume\":\"24 2\",\"pages\":\"344-353\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Device and Materials Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10509818/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10509818/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Aging Monitoring Method of Bond Wires Based on Voltage Ringing Frequency Characteristics in IGBT Modules
This paper introduces a novel online aging monitoring method for bond wires in IGBT modules based on voltage ringing frequency characteristics. The synchronous Buck converter was selected as the IGBT module test system. The influence of the aging degree of upper bridge arm IGBT module on the voltage ringing peak frequency characteristics of the lower bridge arm IGBT module is studied during the switching transient. Considering the influence of junction temperature, power loop wires inductance and driving resistance on the ringing frequency characteristics, this paper measured the standard ringing frequency under the coupling conditions of each factor. Then a standard database under different working conditions is constructed, and the database is used as a criterion to complete the monitoring task. Finally, the converter-level aging monitoring method of bond wires is realized which is non-invasive and real-time. The experimental results show that the proposed method does not need additional equipment, which reduces the complexity of monitoring circuit and has universal applicability.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.