通过 COINSTAC 联合 VBM 分析发现精神病和情绪障碍的皮质相似性

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-05-02 DOI:10.1016/j.patter.2024.100987
Kelly Rootes-Murdy, Sandeep Panta, Ross Kelly, Javier Romero, Yann Quidé, Murray J. Cairns, Carmel Loughland, Vaughan J. Carr, Stanley V. Catts, Assen Jablensky, Melissa J. Green, Frans Henskens, Dylan Kiltschewskij, Patricia T. Michie, Bryan Mowry, Christos Pantelis, Paul E. Rasser, William R. Reay, Ulrich Schall, Rodney J. Scott, Vince D. Calhoun
{"title":"通过 COINSTAC 联合 VBM 分析发现精神病和情绪障碍的皮质相似性","authors":"Kelly Rootes-Murdy, Sandeep Panta, Ross Kelly, Javier Romero, Yann Quidé, Murray J. Cairns, Carmel Loughland, Vaughan J. Carr, Stanley V. Catts, Assen Jablensky, Melissa J. Green, Frans Henskens, Dylan Kiltschewskij, Patricia T. Michie, Bryan Mowry, Christos Pantelis, Paul E. Rasser, William R. Reay, Ulrich Schall, Rodney J. Scott, Vince D. Calhoun","doi":"10.1016/j.patter.2024.100987","DOIUrl":null,"url":null,"abstract":"<p>Structural neuroimaging studies have identified a combination of shared and disorder-specific patterns of gray matter (GM) deficits across psychiatric disorders. Pooling large data allows for examination of a possible common neuroanatomical basis that may identify a certain vulnerability for mental illness. Large-scale collaborative research is already facilitated by data repositories, institutionally supported databases, and data archives. However, these data-sharing methodologies can suffer from significant barriers. Federated approaches augment these approaches by enabling access or more sophisticated, shareable and scaled-up analyses of large-scale data. We examined GM alterations using Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation, an open-source, decentralized analysis application. Through federated analysis of eight sites, we identified significant overlap in the GM patterns (<em>n</em> = 4,102) of individuals with schizophrenia, major depressive disorder, and autism spectrum disorder. These results show cortical and subcortical regions that may indicate a shared vulnerability to psychiatric disorders.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cortical similarities in psychiatric and mood disorders identified in federated VBM analysis via COINSTAC\",\"authors\":\"Kelly Rootes-Murdy, Sandeep Panta, Ross Kelly, Javier Romero, Yann Quidé, Murray J. Cairns, Carmel Loughland, Vaughan J. Carr, Stanley V. Catts, Assen Jablensky, Melissa J. Green, Frans Henskens, Dylan Kiltschewskij, Patricia T. Michie, Bryan Mowry, Christos Pantelis, Paul E. Rasser, William R. Reay, Ulrich Schall, Rodney J. Scott, Vince D. Calhoun\",\"doi\":\"10.1016/j.patter.2024.100987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Structural neuroimaging studies have identified a combination of shared and disorder-specific patterns of gray matter (GM) deficits across psychiatric disorders. Pooling large data allows for examination of a possible common neuroanatomical basis that may identify a certain vulnerability for mental illness. Large-scale collaborative research is already facilitated by data repositories, institutionally supported databases, and data archives. However, these data-sharing methodologies can suffer from significant barriers. Federated approaches augment these approaches by enabling access or more sophisticated, shareable and scaled-up analyses of large-scale data. We examined GM alterations using Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation, an open-source, decentralized analysis application. Through federated analysis of eight sites, we identified significant overlap in the GM patterns (<em>n</em> = 4,102) of individuals with schizophrenia, major depressive disorder, and autism spectrum disorder. These results show cortical and subcortical regions that may indicate a shared vulnerability to psychiatric disorders.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.100987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.100987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

结构神经影像学研究发现,精神疾病的灰质(GM)缺陷既有共同的模式,也有特定疾病的模式。将大量数据汇集在一起,可以对可能存在的共同神经解剖学基础进行研究,从而确定精神疾病的某种易感性。数据存储库、机构支持的数据库和数据档案已经为大规模合作研究提供了便利。然而,这些数据共享方法可能存在重大障碍。联盟式方法可以对大规模数据进行访问或更复杂、可共享和可扩展的分析,从而增强了这些方法。我们使用匿名计算的协作信息学和神经成像套件工具包(一种开源、分散的分析应用程序)研究了基因改变。通过对八个站点的联合分析,我们发现精神分裂症、重度抑郁障碍和自闭症谱系障碍患者的基因组模式(n = 4,102 个)存在显著重叠。这些结果表明,皮层和皮层下区域可能预示着精神疾病的共同易感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cortical similarities in psychiatric and mood disorders identified in federated VBM analysis via COINSTAC

Structural neuroimaging studies have identified a combination of shared and disorder-specific patterns of gray matter (GM) deficits across psychiatric disorders. Pooling large data allows for examination of a possible common neuroanatomical basis that may identify a certain vulnerability for mental illness. Large-scale collaborative research is already facilitated by data repositories, institutionally supported databases, and data archives. However, these data-sharing methodologies can suffer from significant barriers. Federated approaches augment these approaches by enabling access or more sophisticated, shareable and scaled-up analyses of large-scale data. We examined GM alterations using Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation, an open-source, decentralized analysis application. Through federated analysis of eight sites, we identified significant overlap in the GM patterns (n = 4,102) of individuals with schizophrenia, major depressive disorder, and autism spectrum disorder. These results show cortical and subcortical regions that may indicate a shared vulnerability to psychiatric disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
AnnoMate: Exploring and annotating integrated molecular data through custom interactive visualizations Balancing innovation and integrity in peer review The stacking cell puzzle To democratize research with sensitive data, we should make synthetic data more accessible FAIM: Fairness-aware interpretable modeling for trustworthy machine learning in healthcare
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1