利用超快核磁共振模拟实时跟踪锂原子

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Faraday Discussions Pub Date : 2024-05-03 DOI:10.1039/d4fd00074a
Angela F Harper, Tabea Huss, Simone Koecher, Christoph Scheurer
{"title":"利用超快核磁共振模拟实时跟踪锂原子","authors":"Angela F Harper, Tabea Huss, Simone Koecher, Christoph Scheurer","doi":"10.1039/d4fd00074a","DOIUrl":null,"url":null,"abstract":"We present for the first time a multiscale machine learning approach to jointly simulate atomic structure and dynamics with the corresponding solid state Nuclear Magnetic Resonance (ssNMR) observables. We study the use-case of spin-alignment echo (SAE) NMR for exploring Li-ion diffusion within the solid state electrolyte material Li<small><sub>3</sub></small>PS<small><sub>4</sub></small> (LPS) by calculating quadrupolar frequencies of <small><sup>7</sup></small>Li. SAE NMR probes long-range dynamics down to microsecond-timescale hopping processes. Therefore only a few machine learning force field schemes are able to capture the time- and length scales required for accurate comparison with experimental results. By using a new class of machine learning interatomic potentials, known as ultra-fast potentials (UFPs), we are able to efficiently access timescales beyond the microsecond regime. In tandem, we have developed a machine learning model for predicting the full <small><sup>7</sup></small>Li electric field gradient (EFG) tensors in LPS. By combining the long timescale trajectories from the UFP with our model for <small><sup>7</sup></small>Li EFG tensors, we are able to extract the autocorrelation function (ACF) for <small><sup>7</sup></small>Li quadrupolar frequencies during Li diffusion. We extract the decay constants from the ACF for both crystalline β-LPS and amorphous LPS, and find that the predicted Li hopping rates are on the same order of magnitude as those predicted from the Li dynamics. This demonstrates the potential for machine learning to finally make predictions on experimentally relevant timescales and temperatures, and opens a new avenue of NMR crystallography: using machine learning dynamical NMR simulations for accessing polycrystalline and glass ceramic materials.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"28 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking Li atoms in real-time with ultra-fast NMR simulations\",\"authors\":\"Angela F Harper, Tabea Huss, Simone Koecher, Christoph Scheurer\",\"doi\":\"10.1039/d4fd00074a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present for the first time a multiscale machine learning approach to jointly simulate atomic structure and dynamics with the corresponding solid state Nuclear Magnetic Resonance (ssNMR) observables. We study the use-case of spin-alignment echo (SAE) NMR for exploring Li-ion diffusion within the solid state electrolyte material Li<small><sub>3</sub></small>PS<small><sub>4</sub></small> (LPS) by calculating quadrupolar frequencies of <small><sup>7</sup></small>Li. SAE NMR probes long-range dynamics down to microsecond-timescale hopping processes. Therefore only a few machine learning force field schemes are able to capture the time- and length scales required for accurate comparison with experimental results. By using a new class of machine learning interatomic potentials, known as ultra-fast potentials (UFPs), we are able to efficiently access timescales beyond the microsecond regime. In tandem, we have developed a machine learning model for predicting the full <small><sup>7</sup></small>Li electric field gradient (EFG) tensors in LPS. By combining the long timescale trajectories from the UFP with our model for <small><sup>7</sup></small>Li EFG tensors, we are able to extract the autocorrelation function (ACF) for <small><sup>7</sup></small>Li quadrupolar frequencies during Li diffusion. We extract the decay constants from the ACF for both crystalline β-LPS and amorphous LPS, and find that the predicted Li hopping rates are on the same order of magnitude as those predicted from the Li dynamics. This demonstrates the potential for machine learning to finally make predictions on experimentally relevant timescales and temperatures, and opens a new avenue of NMR crystallography: using machine learning dynamical NMR simulations for accessing polycrystalline and glass ceramic materials.\",\"PeriodicalId\":76,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4fd00074a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00074a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们首次提出了一种多尺度机器学习方法,用于联合模拟原子结构和动力学以及相应的固态核磁共振(ssNMR)观测数据。我们通过计算 7Li 的四极频率,研究了自旋配位回波(SAE)核磁共振在固态电解质材料 Li3PS4(LPS)内部探索锂离子扩散的应用案例。SAE NMR 可探测微秒级跳变过程的长程动力学。因此,只有少数机器学习力场方案能够捕捉与实验结果进行精确比较所需的时间和长度尺度。通过使用一类新的机器学习原子间势(称为超快势(UFP)),我们能够有效地获取超过微秒级的时间尺度。与此同时,我们还开发了一种机器学习模型,用于预测 LPS 中完整的 7Li 电场梯度(EFG)张量。通过将来自 UFP 的长时间尺度轨迹与我们的 7Li EFG 张量模型相结合,我们能够提取锂扩散过程中 7Li 四极频率的自相关函数 (ACF)。我们从 ACF 中提取了晶体 β-LPS 和无定形 LPS 的衰减常数,发现预测的锂跳跃速率与锂动力学预测的速率处于同一数量级。这证明了机器学习最终在与实验相关的时间尺度和温度上进行预测的潜力,并为核磁共振晶体学开辟了一条新途径:利用机器学习动态核磁共振模拟来获取多晶和玻璃陶瓷材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tracking Li atoms in real-time with ultra-fast NMR simulations
We present for the first time a multiscale machine learning approach to jointly simulate atomic structure and dynamics with the corresponding solid state Nuclear Magnetic Resonance (ssNMR) observables. We study the use-case of spin-alignment echo (SAE) NMR for exploring Li-ion diffusion within the solid state electrolyte material Li3PS4 (LPS) by calculating quadrupolar frequencies of 7Li. SAE NMR probes long-range dynamics down to microsecond-timescale hopping processes. Therefore only a few machine learning force field schemes are able to capture the time- and length scales required for accurate comparison with experimental results. By using a new class of machine learning interatomic potentials, known as ultra-fast potentials (UFPs), we are able to efficiently access timescales beyond the microsecond regime. In tandem, we have developed a machine learning model for predicting the full 7Li electric field gradient (EFG) tensors in LPS. By combining the long timescale trajectories from the UFP with our model for 7Li EFG tensors, we are able to extract the autocorrelation function (ACF) for 7Li quadrupolar frequencies during Li diffusion. We extract the decay constants from the ACF for both crystalline β-LPS and amorphous LPS, and find that the predicted Li hopping rates are on the same order of magnitude as those predicted from the Li dynamics. This demonstrates the potential for machine learning to finally make predictions on experimentally relevant timescales and temperatures, and opens a new avenue of NMR crystallography: using machine learning dynamical NMR simulations for accessing polycrystalline and glass ceramic materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
期刊最新文献
Discovering synthesis targets: general discussion. Discovering trends in big data: general discussion. Discovering structure-property correlations: general discussion. Discovering chemical structure: general discussion. Understanding dynamics and mechanisms: general discussion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1