完全松弛扭曲双层和三层石墨烯中的伪磁场

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY 2D Materials Pub Date : 2024-04-30 DOI:10.1088/2053-1583/ad3b0e
A Ceferino, F Guinea
{"title":"完全松弛扭曲双层和三层石墨烯中的伪磁场","authors":"A Ceferino, F Guinea","doi":"10.1088/2053-1583/ad3b0e","DOIUrl":null,"url":null,"abstract":"We present simple models to describe the in-plane and the out-of-plane lattice relaxation in twisted bilayer and symmetrically twisted trilayer graphene. Analytical results and series expansions show that for twist angles <inline-formula>\n<tex-math><?CDATA $\\theta\\gt 1.4^{\\circ}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>θ</mml:mi><mml:mo>&gt;</mml:mo><mml:msup><mml:mn>1.4</mml:mn><mml:mrow><mml:mo>∘</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"tdmad3b0eieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, the in-plane atomic displacements lead to pseudomagnetic fields weakly dependent on <italic toggle=\"yes\">θ</italic>. In symmetrically twisted trilayer graphene, the central layer in-plane relaxation is greatly enhanced. The joint effect of the relaxation-induced pseudoscalar potentials and the associated energy difference between interlayer dimer and non-dimer pairs resulted in a significant electron–hole asymmetry both in twisted bilayer and trilayer graphene.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"10 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudomagnetic fields in fully relaxed twisted bilayer and trilayer graphene\",\"authors\":\"A Ceferino, F Guinea\",\"doi\":\"10.1088/2053-1583/ad3b0e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present simple models to describe the in-plane and the out-of-plane lattice relaxation in twisted bilayer and symmetrically twisted trilayer graphene. Analytical results and series expansions show that for twist angles <inline-formula>\\n<tex-math><?CDATA $\\\\theta\\\\gt 1.4^{\\\\circ}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>θ</mml:mi><mml:mo>&gt;</mml:mo><mml:msup><mml:mn>1.4</mml:mn><mml:mrow><mml:mo>∘</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"tdmad3b0eieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, the in-plane atomic displacements lead to pseudomagnetic fields weakly dependent on <italic toggle=\\\"yes\\\">θ</italic>. In symmetrically twisted trilayer graphene, the central layer in-plane relaxation is greatly enhanced. The joint effect of the relaxation-induced pseudoscalar potentials and the associated energy difference between interlayer dimer and non-dimer pairs resulted in a significant electron–hole asymmetry both in twisted bilayer and trilayer graphene.\",\"PeriodicalId\":6812,\"journal\":{\"name\":\"2D Materials\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2D Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1583/ad3b0e\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad3b0e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了描述扭曲双层和对称扭曲三层石墨烯平面内和平面外晶格弛豫的简单模型。分析结果和数列展开表明,对于扭转角θ>1.4∘,面内原子位移导致的伪磁场微弱地依赖于θ。弛豫引起的伪谱电势以及层间二聚体和非二聚体对之间的相关能量差共同作用,导致扭曲双层和三层石墨烯中的电子-空穴显著不对称。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pseudomagnetic fields in fully relaxed twisted bilayer and trilayer graphene
We present simple models to describe the in-plane and the out-of-plane lattice relaxation in twisted bilayer and symmetrically twisted trilayer graphene. Analytical results and series expansions show that for twist angles θ>1.4 , the in-plane atomic displacements lead to pseudomagnetic fields weakly dependent on θ. In symmetrically twisted trilayer graphene, the central layer in-plane relaxation is greatly enhanced. The joint effect of the relaxation-induced pseudoscalar potentials and the associated energy difference between interlayer dimer and non-dimer pairs resulted in a significant electron–hole asymmetry both in twisted bilayer and trilayer graphene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
2D Materials
2D Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
10.70
自引率
5.50%
发文量
138
审稿时长
1.5 months
期刊介绍: 2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.
期刊最新文献
Constructing three-dimensional GO/CNT@NMP aerogels towards primary lithium metal batteries Two-dimensional Janus MXTe (M = Hf, Zr; X = S, Se) piezoelectrocatalysts: a comprehensive investigation of its electronic, synthesis feasibility, electric polarization, and hydrogen evolution reaction activity The future of Xenes beyond graphene: challenges and perspective Soft-carbon-tuned hard carbon anode for ultrahigh-rate sodium storage Multiscale computational modeling techniques in study and design of 2D materials: recent advances, challenges, and opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1