Uneneibotejit Otokwala, Andrei Petrovski, Harsha Kalutarage
{"title":"用于物联网轻量级入侵检测的优化通用特征选择和深度自动编码器(OCFSDA)","authors":"Uneneibotejit Otokwala, Andrei Petrovski, Harsha Kalutarage","doi":"10.1007/s10207-024-00855-7","DOIUrl":null,"url":null,"abstract":"<p>Embedded systems, including the Internet of things (IoT), play a crucial role in the functioning of critical infrastructure. However, these devices face significant challenges such as memory footprint, technical challenges, privacy concerns, performance trade-offs and vulnerability to cyber-attacks. One approach to address these concerns is minimising computational overhead and adopting lightweight intrusion detection techniques. In this study, we propose a highly efficient model called optimized common features selection and deep-autoencoder (OCFSDA) for lightweight intrusion detection in IoT environments. The proposed OCFSDA model incorporates feature selection, data compression, pruning, and deparameterization. We deployed the model on a Raspberry Pi4 using the TFLite interpreter by leveraging optimisation and inferencing with semi-supervised learning. Using the MQTT-IoT-IDS2020 and CIC-IDS2017 datasets, our experimental results demonstrate a remarkable reduction in the computation cost in terms of time and memory use. Notably, the model achieved an overall average accuracies of 99% and 97%, along with comparable performance on other important metrics such as precision, recall, and F1-score. Moreover, the model accomplished the classification tasks within 0.30 and 0.12 s using only 2KB of memory.</p>","PeriodicalId":50316,"journal":{"name":"International Journal of Information Security","volume":"85 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized common features selection and deep-autoencoder (OCFSDA) for lightweight intrusion detection in Internet of things\",\"authors\":\"Uneneibotejit Otokwala, Andrei Petrovski, Harsha Kalutarage\",\"doi\":\"10.1007/s10207-024-00855-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Embedded systems, including the Internet of things (IoT), play a crucial role in the functioning of critical infrastructure. However, these devices face significant challenges such as memory footprint, technical challenges, privacy concerns, performance trade-offs and vulnerability to cyber-attacks. One approach to address these concerns is minimising computational overhead and adopting lightweight intrusion detection techniques. In this study, we propose a highly efficient model called optimized common features selection and deep-autoencoder (OCFSDA) for lightweight intrusion detection in IoT environments. The proposed OCFSDA model incorporates feature selection, data compression, pruning, and deparameterization. We deployed the model on a Raspberry Pi4 using the TFLite interpreter by leveraging optimisation and inferencing with semi-supervised learning. Using the MQTT-IoT-IDS2020 and CIC-IDS2017 datasets, our experimental results demonstrate a remarkable reduction in the computation cost in terms of time and memory use. Notably, the model achieved an overall average accuracies of 99% and 97%, along with comparable performance on other important metrics such as precision, recall, and F1-score. Moreover, the model accomplished the classification tasks within 0.30 and 0.12 s using only 2KB of memory.</p>\",\"PeriodicalId\":50316,\"journal\":{\"name\":\"International Journal of Information Security\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10207-024-00855-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10207-024-00855-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Optimized common features selection and deep-autoencoder (OCFSDA) for lightweight intrusion detection in Internet of things
Embedded systems, including the Internet of things (IoT), play a crucial role in the functioning of critical infrastructure. However, these devices face significant challenges such as memory footprint, technical challenges, privacy concerns, performance trade-offs and vulnerability to cyber-attacks. One approach to address these concerns is minimising computational overhead and adopting lightweight intrusion detection techniques. In this study, we propose a highly efficient model called optimized common features selection and deep-autoencoder (OCFSDA) for lightweight intrusion detection in IoT environments. The proposed OCFSDA model incorporates feature selection, data compression, pruning, and deparameterization. We deployed the model on a Raspberry Pi4 using the TFLite interpreter by leveraging optimisation and inferencing with semi-supervised learning. Using the MQTT-IoT-IDS2020 and CIC-IDS2017 datasets, our experimental results demonstrate a remarkable reduction in the computation cost in terms of time and memory use. Notably, the model achieved an overall average accuracies of 99% and 97%, along with comparable performance on other important metrics such as precision, recall, and F1-score. Moreover, the model accomplished the classification tasks within 0.30 and 0.12 s using only 2KB of memory.
期刊介绍:
The International Journal of Information Security is an English language periodical on research in information security which offers prompt publication of important technical work, whether theoretical, applicable, or related to implementation.
Coverage includes system security: intrusion detection, secure end systems, secure operating systems, database security, security infrastructures, security evaluation; network security: Internet security, firewalls, mobile security, security agents, protocols, anti-virus and anti-hacker measures; content protection: watermarking, software protection, tamper resistant software; applications: electronic commerce, government, health, telecommunications, mobility.