{"title":"电动汽车双定子开关磁阻机的多模式运行","authors":"Shujing Li, Xiaojuan Huang, Zhiheng He, Yongxiang Liu, Hui Qu, Jing Wu","doi":"10.1108/compel-10-2023-0531","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this paper is to introduce a double-stator switched reluctance machine (DS-SRM) for electric vehicles (EVs) and to propose multi-mode operations for this machine.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Analysis of flux linkage distributions and torque characteristics using finite element method (FEM). Building a dynamic simulation model based on electromagnetic characteristics, mathematical equations and mechanical motion equations of the DS-SRM drive system. The paper proposes multi-mode operations (inner-stator excitation mode, outer-stator excitation mode and double-stator excitation mode) based on motor working regions. It also conducts simulation and experimental results to verify the effectiveness of the proposed multi-mode operations strategies and control schemes.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>There is almost no electromagnetic coupling between the inner and outer stators due to the specially designed rotor structure and optimized windings polarity configuration. Analysis of flux linkage distributions and torque characteristics verified the independence of inner and outer stators. Proposal of multi-mode operations and corresponding control rules achieved the smooth switching between different modes.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The paper introduced the DS-SRM for EVs and proposed multi-mode operations, along with control rules, to optimize its performance. The specially designed rotor structure, optimized winding polarity configuration, and the proposed multi-mode operations contribute to the originality of the research.</p><!--/ Abstract__block -->","PeriodicalId":501376,"journal":{"name":"COMPEL","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-mode operations of double-stator switched reluctance machine for electric vehicle\",\"authors\":\"Shujing Li, Xiaojuan Huang, Zhiheng He, Yongxiang Liu, Hui Qu, Jing Wu\",\"doi\":\"10.1108/compel-10-2023-0531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The purpose of this paper is to introduce a double-stator switched reluctance machine (DS-SRM) for electric vehicles (EVs) and to propose multi-mode operations for this machine.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>Analysis of flux linkage distributions and torque characteristics using finite element method (FEM). Building a dynamic simulation model based on electromagnetic characteristics, mathematical equations and mechanical motion equations of the DS-SRM drive system. The paper proposes multi-mode operations (inner-stator excitation mode, outer-stator excitation mode and double-stator excitation mode) based on motor working regions. It also conducts simulation and experimental results to verify the effectiveness of the proposed multi-mode operations strategies and control schemes.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>There is almost no electromagnetic coupling between the inner and outer stators due to the specially designed rotor structure and optimized windings polarity configuration. Analysis of flux linkage distributions and torque characteristics verified the independence of inner and outer stators. Proposal of multi-mode operations and corresponding control rules achieved the smooth switching between different modes.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The paper introduced the DS-SRM for EVs and proposed multi-mode operations, along with control rules, to optimize its performance. The specially designed rotor structure, optimized winding polarity configuration, and the proposed multi-mode operations contribute to the originality of the research.</p><!--/ Abstract__block -->\",\"PeriodicalId\":501376,\"journal\":{\"name\":\"COMPEL\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"COMPEL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/compel-10-2023-0531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"COMPEL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/compel-10-2023-0531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-mode operations of double-stator switched reluctance machine for electric vehicle
Purpose
The purpose of this paper is to introduce a double-stator switched reluctance machine (DS-SRM) for electric vehicles (EVs) and to propose multi-mode operations for this machine.
Design/methodology/approach
Analysis of flux linkage distributions and torque characteristics using finite element method (FEM). Building a dynamic simulation model based on electromagnetic characteristics, mathematical equations and mechanical motion equations of the DS-SRM drive system. The paper proposes multi-mode operations (inner-stator excitation mode, outer-stator excitation mode and double-stator excitation mode) based on motor working regions. It also conducts simulation and experimental results to verify the effectiveness of the proposed multi-mode operations strategies and control schemes.
Findings
There is almost no electromagnetic coupling between the inner and outer stators due to the specially designed rotor structure and optimized windings polarity configuration. Analysis of flux linkage distributions and torque characteristics verified the independence of inner and outer stators. Proposal of multi-mode operations and corresponding control rules achieved the smooth switching between different modes.
Originality/value
The paper introduced the DS-SRM for EVs and proposed multi-mode operations, along with control rules, to optimize its performance. The specially designed rotor structure, optimized winding polarity configuration, and the proposed multi-mode operations contribute to the originality of the research.