{"title":"用高效液相色谱法测定新型合成十肽中相关物质的稳定性指示方法的开发与验证","authors":"Ramesh Pawar, Sunil Tivari, Divya Panchani, Jayanti Makasana","doi":"10.1002/psc.3610","DOIUrl":null,"url":null,"abstract":"<p>In the present scenario, peptide is an emerging field of research having vast therapeutic applications. Diverse impurities may rise from various stages of the synthesis process and storage of the peptides. Because these contaminants may have an impact on the therapeutic safety and effectiveness of peptides in their approaching applications, they must be identified and carefully monitored. Considering the pharmaceutical importance of the extent of peptides, we were motivated to synthesize a decapeptide and establish a novel gradient reversed-phase high-performance liquid chromatography (RP-HPLC) method for its analysis along with efficient separation of its six related impurities. Different buffers, organic modifiers, and columns were used in the tests for good separation of these impurities. To establish a stability-indicating method, a stress study was also conducted. The International Conference on Harmonization (ICH) guidelines have been followed for validation of the developed analytical method. The validated method revealed sufficient accuracy, specificity, linearity, robustness, precision, and high sensitivity for its intended use. The proposed method could be appropriate for routine analysis and stability assessment of the decapeptide, which might be useful for further scientific investigation.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stability-indicating method development and validation for the determination of related substances in novel synthetic decapeptide by HPLC\",\"authors\":\"Ramesh Pawar, Sunil Tivari, Divya Panchani, Jayanti Makasana\",\"doi\":\"10.1002/psc.3610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present scenario, peptide is an emerging field of research having vast therapeutic applications. Diverse impurities may rise from various stages of the synthesis process and storage of the peptides. Because these contaminants may have an impact on the therapeutic safety and effectiveness of peptides in their approaching applications, they must be identified and carefully monitored. Considering the pharmaceutical importance of the extent of peptides, we were motivated to synthesize a decapeptide and establish a novel gradient reversed-phase high-performance liquid chromatography (RP-HPLC) method for its analysis along with efficient separation of its six related impurities. Different buffers, organic modifiers, and columns were used in the tests for good separation of these impurities. To establish a stability-indicating method, a stress study was also conducted. The International Conference on Harmonization (ICH) guidelines have been followed for validation of the developed analytical method. The validated method revealed sufficient accuracy, specificity, linearity, robustness, precision, and high sensitivity for its intended use. The proposed method could be appropriate for routine analysis and stability assessment of the decapeptide, which might be useful for further scientific investigation.</p>\",\"PeriodicalId\":16946,\"journal\":{\"name\":\"Journal of Peptide Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Peptide Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/psc.3610\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.3610","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A stability-indicating method development and validation for the determination of related substances in novel synthetic decapeptide by HPLC
In the present scenario, peptide is an emerging field of research having vast therapeutic applications. Diverse impurities may rise from various stages of the synthesis process and storage of the peptides. Because these contaminants may have an impact on the therapeutic safety and effectiveness of peptides in their approaching applications, they must be identified and carefully monitored. Considering the pharmaceutical importance of the extent of peptides, we were motivated to synthesize a decapeptide and establish a novel gradient reversed-phase high-performance liquid chromatography (RP-HPLC) method for its analysis along with efficient separation of its six related impurities. Different buffers, organic modifiers, and columns were used in the tests for good separation of these impurities. To establish a stability-indicating method, a stress study was also conducted. The International Conference on Harmonization (ICH) guidelines have been followed for validation of the developed analytical method. The validated method revealed sufficient accuracy, specificity, linearity, robustness, precision, and high sensitivity for its intended use. The proposed method could be appropriate for routine analysis and stability assessment of the decapeptide, which might be useful for further scientific investigation.
期刊介绍:
The official Journal of the European Peptide Society EPS
The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews.
The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.