Georgina Whittome, John Calambokidis, Annie B. Douglas, Michael Fishbach, Richard Sears, Philip S. Hammond
{"title":"加利福尼亚湾蓝鲸生存和数量的变化","authors":"Georgina Whittome, John Calambokidis, Annie B. Douglas, Michael Fishbach, Richard Sears, Philip S. Hammond","doi":"10.1111/mms.13132","DOIUrl":null,"url":null,"abstract":"<p>Understanding the drivers of population abundance and distribution is fundamental to ecology and key to informing conservation actions, particularly in endangered species like blue whales (<i>Balaenoptera musculus</i>). Historically, some Eastern North Pacific blue whales have aggregated in the Gulf of California (GoC) each winter. Using photo-identification data collected around Loreto Bay from 1984 to 2020, we analyzed 453 sightings histories using mark-recapture models. Estimated apparent survival (including permanent emigration) decreased from 0.991, 95% CI [0.977, 0.997] in 1985 to 0.889, 95% CI [0.807, 0.939] in 2019. The estimated number of whales using the study area declined from 96 whales, 95% CI [50, 254] in 2012 to 13 whales, 95% CIs [12, 23 and 12, 28] in 2018 and 2019. Abundance of the whole Eastern North Pacific population is slowly increasing, so our results likely reflect declining usage of the GoC. Linear models found a relationship between the number of whales in the GoC and the difference in sea surface temperature between the study area and the Costa Rica Dome wintering area, suggesting that environmental variation could explain variation in blue whale numbers in the GoC. These results highlight the importance of tracking population dynamics as changing environmental conditions affect the range and distribution of populations.</p>","PeriodicalId":18725,"journal":{"name":"Marine Mammal Science","volume":"40 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.13132","citationCount":"0","resultStr":"{\"title\":\"Changes in blue whale survival and abundance in the Gulf of California\",\"authors\":\"Georgina Whittome, John Calambokidis, Annie B. Douglas, Michael Fishbach, Richard Sears, Philip S. Hammond\",\"doi\":\"10.1111/mms.13132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the drivers of population abundance and distribution is fundamental to ecology and key to informing conservation actions, particularly in endangered species like blue whales (<i>Balaenoptera musculus</i>). Historically, some Eastern North Pacific blue whales have aggregated in the Gulf of California (GoC) each winter. Using photo-identification data collected around Loreto Bay from 1984 to 2020, we analyzed 453 sightings histories using mark-recapture models. Estimated apparent survival (including permanent emigration) decreased from 0.991, 95% CI [0.977, 0.997] in 1985 to 0.889, 95% CI [0.807, 0.939] in 2019. The estimated number of whales using the study area declined from 96 whales, 95% CI [50, 254] in 2012 to 13 whales, 95% CIs [12, 23 and 12, 28] in 2018 and 2019. Abundance of the whole Eastern North Pacific population is slowly increasing, so our results likely reflect declining usage of the GoC. Linear models found a relationship between the number of whales in the GoC and the difference in sea surface temperature between the study area and the Costa Rica Dome wintering area, suggesting that environmental variation could explain variation in blue whale numbers in the GoC. These results highlight the importance of tracking population dynamics as changing environmental conditions affect the range and distribution of populations.</p>\",\"PeriodicalId\":18725,\"journal\":{\"name\":\"Marine Mammal Science\",\"volume\":\"40 4\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mms.13132\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Mammal Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mms.13132\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Mammal Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mms.13132","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Changes in blue whale survival and abundance in the Gulf of California
Understanding the drivers of population abundance and distribution is fundamental to ecology and key to informing conservation actions, particularly in endangered species like blue whales (Balaenoptera musculus). Historically, some Eastern North Pacific blue whales have aggregated in the Gulf of California (GoC) each winter. Using photo-identification data collected around Loreto Bay from 1984 to 2020, we analyzed 453 sightings histories using mark-recapture models. Estimated apparent survival (including permanent emigration) decreased from 0.991, 95% CI [0.977, 0.997] in 1985 to 0.889, 95% CI [0.807, 0.939] in 2019. The estimated number of whales using the study area declined from 96 whales, 95% CI [50, 254] in 2012 to 13 whales, 95% CIs [12, 23 and 12, 28] in 2018 and 2019. Abundance of the whole Eastern North Pacific population is slowly increasing, so our results likely reflect declining usage of the GoC. Linear models found a relationship between the number of whales in the GoC and the difference in sea surface temperature between the study area and the Costa Rica Dome wintering area, suggesting that environmental variation could explain variation in blue whale numbers in the GoC. These results highlight the importance of tracking population dynamics as changing environmental conditions affect the range and distribution of populations.
期刊介绍:
Published for the Society for Marine Mammalogy, Marine Mammal Science is a source of significant new findings on marine mammals resulting from original research on their form and function, evolution, systematics, physiology, biochemistry, behavior, population biology, life history, genetics, ecology and conservation. The journal features both original and review articles, notes, opinions and letters. It serves as a vital resource for anyone studying marine mammals.