最大切割问题生物分子解决方案的生物启发量子甲骨文电路

IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS IEEE Transactions on NanoBioscience Pub Date : 2024-04-30 DOI:10.1109/TNB.2024.3395420
Weng-Long Chang;Renata Wong;Yu-Hao Chen;Wen-Yu Chung;Ju-Chin Chen;Athanasios V. Vasilakos
{"title":"最大切割问题生物分子解决方案的生物启发量子甲骨文电路","authors":"Weng-Long Chang;Renata Wong;Yu-Hao Chen;Wen-Yu Chung;Ju-Chin Chen;Athanasios V. Vasilakos","doi":"10.1109/TNB.2024.3395420","DOIUrl":null,"url":null,"abstract":"Given an undirected, unweighted graph with n vertices and m edges, the maximum cut problem is to find a partition of the n vertices into disjoint subsets \n<inline-formula> <tex-math>${V}_{{1}}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>${V}_{{2}}$ </tex-math></inline-formula>\n such that the number of edges between them is as large as possible. Classically, it is an NP-complete problem, which has potential applications ranging from circuit layout design, statistical physics, computer vision, machine learning and network science to clustering. In this paper, we propose a biomolecular and a quantum algorithm to solve the maximum cut problem for any graph G. The quantum algorithm is inspired by the biomolecular algorithm and has a quadratic speedup over its classical counterparts, where the temporal and spatial complexities are reduced to, respectively, \n<inline-formula> <tex-math>${O}\\text {(}\\sqrt {{2}^{n}/{r}}\\text {)}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>${O}\\text {(}{m}^{{2}}\\text {)}$ </tex-math></inline-formula>\n. With respect to oracle-related quantum algorithms for NP-complete problems, we identify our algorithm as optimal. Furthermore, to justify the feasibility of the proposed algorithm, we successfully solve a typical maximum cut problem for a graph with three vertices and two edges by carrying out experiments on IBM’s quantum simulator.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 3","pages":"499-506"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired Quantum Oracle Circuits for Biomolecular Solutions of the Maximum Cut Problem\",\"authors\":\"Weng-Long Chang;Renata Wong;Yu-Hao Chen;Wen-Yu Chung;Ju-Chin Chen;Athanasios V. Vasilakos\",\"doi\":\"10.1109/TNB.2024.3395420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an undirected, unweighted graph with n vertices and m edges, the maximum cut problem is to find a partition of the n vertices into disjoint subsets \\n<inline-formula> <tex-math>${V}_{{1}}$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>${V}_{{2}}$ </tex-math></inline-formula>\\n such that the number of edges between them is as large as possible. Classically, it is an NP-complete problem, which has potential applications ranging from circuit layout design, statistical physics, computer vision, machine learning and network science to clustering. In this paper, we propose a biomolecular and a quantum algorithm to solve the maximum cut problem for any graph G. The quantum algorithm is inspired by the biomolecular algorithm and has a quadratic speedup over its classical counterparts, where the temporal and spatial complexities are reduced to, respectively, \\n<inline-formula> <tex-math>${O}\\\\text {(}\\\\sqrt {{2}^{n}/{r}}\\\\text {)}$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>${O}\\\\text {(}{m}^{{2}}\\\\text {)}$ </tex-math></inline-formula>\\n. With respect to oracle-related quantum algorithms for NP-complete problems, we identify our algorithm as optimal. Furthermore, to justify the feasibility of the proposed algorithm, we successfully solve a typical maximum cut problem for a graph with three vertices and two edges by carrying out experiments on IBM’s quantum simulator.\",\"PeriodicalId\":13264,\"journal\":{\"name\":\"IEEE Transactions on NanoBioscience\",\"volume\":\"23 3\",\"pages\":\"499-506\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on NanoBioscience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10510482/\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/10510482/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个有 n 个顶点和 m 条边的无向、无权重图,最大剪切问题就是将 n 个顶点划分为不相交的子集 ${V}_{{1}}$ 和 ${V}_{{2}}$ ,使它们之间的边的数量尽可能多。从经典上讲,这是一个 NP-完全问题,其潜在应用范围包括电路布局设计、统计物理、计算机视觉、机器学习和网络科学以及聚类。本文提出了一种生物分子算法和一种量子算法来解决任意图 G 的最大切割问题。量子算法受到生物分子算法的启发,与经典算法相比速度提高了四倍,其中时间复杂度和空间复杂度分别降低为 ${O}\text {(}\sqrt {{2}^{n}/{r}}\text {)}$ 和 ${O}\text {(}{m}^{2}}\text {)}$ 。相对于 NP-complete问题的甲骨文相关量子算法,我们认为我们的算法是最优的。此外,为了证明所提算法的可行性,我们在 IBM 的量子模拟器上进行了实验,成功地解决了一个有三个顶点和两条边的图的典型最大切割问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioinspired Quantum Oracle Circuits for Biomolecular Solutions of the Maximum Cut Problem
Given an undirected, unweighted graph with n vertices and m edges, the maximum cut problem is to find a partition of the n vertices into disjoint subsets ${V}_{{1}}$ and ${V}_{{2}}$ such that the number of edges between them is as large as possible. Classically, it is an NP-complete problem, which has potential applications ranging from circuit layout design, statistical physics, computer vision, machine learning and network science to clustering. In this paper, we propose a biomolecular and a quantum algorithm to solve the maximum cut problem for any graph G. The quantum algorithm is inspired by the biomolecular algorithm and has a quadratic speedup over its classical counterparts, where the temporal and spatial complexities are reduced to, respectively, ${O}\text {(}\sqrt {{2}^{n}/{r}}\text {)}$ and ${O}\text {(}{m}^{{2}}\text {)}$ . With respect to oracle-related quantum algorithms for NP-complete problems, we identify our algorithm as optimal. Furthermore, to justify the feasibility of the proposed algorithm, we successfully solve a typical maximum cut problem for a graph with three vertices and two edges by carrying out experiments on IBM’s quantum simulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on NanoBioscience
IEEE Transactions on NanoBioscience 工程技术-纳米科技
CiteScore
7.00
自引率
5.10%
发文量
197
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).
期刊最新文献
Electrospun Stannic Oxide Nanofiber Thin-Film Based Sensing Device for Monitoring Functional Behaviours of Adherent Mammalian Cells. "Galaxy" encoding: toward high storage density and low cost. 2024 Index IEEE Transactions on NanoBioscience Vol. 23 Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1