{"title":"基于还原的 D 有限函数定和创造性伸缩","authors":"Hadrien Brochet, Bruno Salvy","doi":"10.1016/j.jsc.2024.102329","DOIUrl":null,"url":null,"abstract":"<div><p>Creative telescoping is an algorithmic method initiated by Zeilberger to compute definite sums by synthesizing summands that telescope, called certificates. We describe a creative telescoping algorithm that computes telescopers for definite sums of D-finite functions as well as the associated certificates in a compact form. The algorithm relies on a discrete analogue of the generalized Hermite reduction, or equivalently, a generalization of the Abramov-Petkovšek reduction. We provide a Maple implementation with good timings on a variety of examples.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction-based creative telescoping for definite summation of D-finite functions\",\"authors\":\"Hadrien Brochet, Bruno Salvy\",\"doi\":\"10.1016/j.jsc.2024.102329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Creative telescoping is an algorithmic method initiated by Zeilberger to compute definite sums by synthesizing summands that telescope, called certificates. We describe a creative telescoping algorithm that computes telescopers for definite sums of D-finite functions as well as the associated certificates in a compact form. The algorithm relies on a discrete analogue of the generalized Hermite reduction, or equivalently, a generalization of the Abramov-Petkovšek reduction. We provide a Maple implementation with good timings on a variety of examples.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
创造性伸缩是蔡尔伯格(Zeilberger)提出的一种算法方法,它通过合成能伸缩的和来计算定和,这些和被称为证书。我们描述了一种创造性的伸缩算法,它能以紧凑的形式计算 D 有限函数定和的伸缩器以及相关的证书。该算法依赖于广义赫米特还原法的离散类比,或者等价于阿布拉莫夫-佩特科夫舍克还原法的广义化。我们提供了一个 Maple 实现,在各种示例上都有很好的时效性。
Reduction-based creative telescoping for definite summation of D-finite functions
Creative telescoping is an algorithmic method initiated by Zeilberger to compute definite sums by synthesizing summands that telescope, called certificates. We describe a creative telescoping algorithm that computes telescopers for definite sums of D-finite functions as well as the associated certificates in a compact form. The algorithm relies on a discrete analogue of the generalized Hermite reduction, or equivalently, a generalization of the Abramov-Petkovšek reduction. We provide a Maple implementation with good timings on a variety of examples.