钴镍钒酸盐纳米菌落沉积碳织物作为锂离子电池和氧进化反应的双功能电极

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Fiber Materials Pub Date : 2024-05-02 DOI:10.1007/s42765-024-00419-3
Sale Chandra Sekhar, Bhimanaboina Ramulu, Shaik Junied Arbaz, Manchi Nagaraju, Jae Su Yu
{"title":"钴镍钒酸盐纳米菌落沉积碳织物作为锂离子电池和氧进化反应的双功能电极","authors":"Sale Chandra Sekhar,&nbsp;Bhimanaboina Ramulu,&nbsp;Shaik Junied Arbaz,&nbsp;Manchi Nagaraju,&nbsp;Jae Su Yu","doi":"10.1007/s42765-024-00419-3","DOIUrl":null,"url":null,"abstract":"<div><p>Transition metal vanadates (TMVs) have attracted significant attention in various research fields owing to their advantageous features. Furthermore, synthesizing TMVs directly on current collectors at the nanoscale is a promising strategy for achieving better performance. Herein, cobalt–nickel vanadate (CoV<sub>2</sub>O<sub>6</sub>–Ni<sub>2</sub>V<sub>2</sub>O<sub>7</sub>, CNV) was directly grown on carbon fabric using a facile one-step hydrothermal method. In particular, the CNV sample prepared for 3 h (CNV-3) exhibited a benefit-enriched nanonest-colony morphology in which abundant nanowires (diameter: 10 nm) were intertwined, providing sufficient space for electrolyte diffusion. All the CNV electrodes exhibited good cycling performance in the lithium-ion battery study. Especially, the CNV-3 electrode retained higher discharge and charge capacities of 616 and 610 mAh g<sup>−1</sup>, respectively at the 100th cycle than the other two electrodes owing to several morphologic features. The electrocatalytic activity of all the CNV samples for the oxygen-evolution reaction (OER) was also explored in an alkaline electrolyte. Among these CNV catalysts, the CNV-3 displayed excellent OER performance and required an overpotential of only 270 mV to drive a current density of 10 mA cm<sup>−2</sup>. The Tafel slope of this catalyst was also found to be low (129 mV dec<sup>−1</sup>). Moreover, the catalyst exhibited excellent durability in a 24 h stability test. These results indicate that the metal vanadates with favorable nanostructures are highly suitable for both energy storage and water-splitting applications.</p><h3>Graphical Abstract</h3><p>CoV<sub>2</sub>O<sub>6</sub>–Ni<sub>2</sub>V<sub>2</sub>O<sub>7</sub> material grown directly on carbon fabric as novel nanonest colonies demonstrated stable electrochemical response in both lithium-ion battery and oxygen-evolution reaction studies</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 4","pages":"1229 - 1240"},"PeriodicalIF":17.2000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cobalt–Nickel Vanadate Nanonest Colonies Deposited Carbon Fabric as a Bifunctional Electrode for Li-Ion Batteries and Oxygen-Evolution Reactions\",\"authors\":\"Sale Chandra Sekhar,&nbsp;Bhimanaboina Ramulu,&nbsp;Shaik Junied Arbaz,&nbsp;Manchi Nagaraju,&nbsp;Jae Su Yu\",\"doi\":\"10.1007/s42765-024-00419-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transition metal vanadates (TMVs) have attracted significant attention in various research fields owing to their advantageous features. Furthermore, synthesizing TMVs directly on current collectors at the nanoscale is a promising strategy for achieving better performance. Herein, cobalt–nickel vanadate (CoV<sub>2</sub>O<sub>6</sub>–Ni<sub>2</sub>V<sub>2</sub>O<sub>7</sub>, CNV) was directly grown on carbon fabric using a facile one-step hydrothermal method. In particular, the CNV sample prepared for 3 h (CNV-3) exhibited a benefit-enriched nanonest-colony morphology in which abundant nanowires (diameter: 10 nm) were intertwined, providing sufficient space for electrolyte diffusion. All the CNV electrodes exhibited good cycling performance in the lithium-ion battery study. Especially, the CNV-3 electrode retained higher discharge and charge capacities of 616 and 610 mAh g<sup>−1</sup>, respectively at the 100th cycle than the other two electrodes owing to several morphologic features. The electrocatalytic activity of all the CNV samples for the oxygen-evolution reaction (OER) was also explored in an alkaline electrolyte. Among these CNV catalysts, the CNV-3 displayed excellent OER performance and required an overpotential of only 270 mV to drive a current density of 10 mA cm<sup>−2</sup>. The Tafel slope of this catalyst was also found to be low (129 mV dec<sup>−1</sup>). Moreover, the catalyst exhibited excellent durability in a 24 h stability test. These results indicate that the metal vanadates with favorable nanostructures are highly suitable for both energy storage and water-splitting applications.</p><h3>Graphical Abstract</h3><p>CoV<sub>2</sub>O<sub>6</sub>–Ni<sub>2</sub>V<sub>2</sub>O<sub>7</sub> material grown directly on carbon fabric as novel nanonest colonies demonstrated stable electrochemical response in both lithium-ion battery and oxygen-evolution reaction studies</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"6 4\",\"pages\":\"1229 - 1240\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-024-00419-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00419-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属钒酸盐(TMVs)因其优越的特性而在各个研究领域备受关注。此外,在纳米尺度的电流收集器上直接合成 TMVs 是实现更佳性能的一种有前途的策略。本文采用简便的一步水热法在碳织物上直接生长了钒酸钴镍(CoV2O6-Ni2V2O7,CNV)。其中,经过 3 小时制备的 CNV 样品(CNV-3)呈现出丰富的纳米巢穴形态,大量纳米线(直径:10 纳米)交织在一起,为电解质扩散提供了足够的空间。在锂离子电池研究中,所有 CNV 电极都表现出良好的循环性能。特别是 CNV-3 电极,由于其形态特征,在第 100 次循环时,其放电容量和充电容量分别为 616 mAh g-1 和 610 mAh g-1 ,高于其他两种电极。此外,还在碱性电解质中考察了所有 CNV 样品对氧演变反应(OER)的电催化活性。在这些 CNV 催化剂中,CNV-3 表现出优异的 OER 性能,只需要 270 mV 的过电位就能驱动 10 mA cm-2 的电流密度。该催化剂的塔菲尔斜率也很低(129 mV dec-1)。此外,该催化剂在 24 小时稳定性测试中表现出极佳的耐久性。这些结果表明,具有良好纳米结构的金属钒酸盐非常适合于储能和水分离应用。 图解摘要CoV2O6-Ni2V2O7 材料作为新型纳米菌落直接生长在碳织物上,在锂离子电池和氧进化反应研究中均表现出稳定的电化学响应
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cobalt–Nickel Vanadate Nanonest Colonies Deposited Carbon Fabric as a Bifunctional Electrode for Li-Ion Batteries and Oxygen-Evolution Reactions

Transition metal vanadates (TMVs) have attracted significant attention in various research fields owing to their advantageous features. Furthermore, synthesizing TMVs directly on current collectors at the nanoscale is a promising strategy for achieving better performance. Herein, cobalt–nickel vanadate (CoV2O6–Ni2V2O7, CNV) was directly grown on carbon fabric using a facile one-step hydrothermal method. In particular, the CNV sample prepared for 3 h (CNV-3) exhibited a benefit-enriched nanonest-colony morphology in which abundant nanowires (diameter: 10 nm) were intertwined, providing sufficient space for electrolyte diffusion. All the CNV electrodes exhibited good cycling performance in the lithium-ion battery study. Especially, the CNV-3 electrode retained higher discharge and charge capacities of 616 and 610 mAh g−1, respectively at the 100th cycle than the other two electrodes owing to several morphologic features. The electrocatalytic activity of all the CNV samples for the oxygen-evolution reaction (OER) was also explored in an alkaline electrolyte. Among these CNV catalysts, the CNV-3 displayed excellent OER performance and required an overpotential of only 270 mV to drive a current density of 10 mA cm−2. The Tafel slope of this catalyst was also found to be low (129 mV dec−1). Moreover, the catalyst exhibited excellent durability in a 24 h stability test. These results indicate that the metal vanadates with favorable nanostructures are highly suitable for both energy storage and water-splitting applications.

Graphical Abstract

CoV2O6–Ni2V2O7 material grown directly on carbon fabric as novel nanonest colonies demonstrated stable electrochemical response in both lithium-ion battery and oxygen-evolution reaction studies

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
期刊最新文献
Bioactive Glass-Reinforced Hybrid Microfibrous Spheres Promote Bone Defect Repair via Stem Cell Delivery Fiber/Yarn and Textile-Based Piezoresistive Pressure Sensors ACAn Energy-Autonomous Wearable Fabric Powered by High-Power Density Sweat-Activated Batteries for Health Monitoring Robust Dual Equivariant Gradient Antibacterial Wound Dressing-Loaded Artificial Skin with Nano-chitin Particles Via an Electrospinning-Reactive Strategy Fiber Science at Xinjiang University: A Special Issue Dedicated to Centennial Celebration of Xinjiang University
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1