JMEMS Letters.1pt 利用 20nm 独立式 Hf_{0.5}$Zr_{0.5}$O$_{2}$ 膜对温度敏感的纳米压电机械谐振器进行表征

IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Microelectromechanical Systems Pub Date : 2024-03-03 DOI:10.1109/JMEMS.2024.3392402
Jingyi Zhang;Haoqi Lyu;Wuhao Yang;Hai Zhong;Zhuohui Liu;Xiaorui Bie;Xingyin Xiong;Zheng Wang;Chen Ge;Xudong Zou
{"title":"JMEMS Letters.1pt 利用 20nm 独立式 Hf_{0.5}$Zr_{0.5}$O$_{2}$ 膜对温度敏感的纳米压电机械谐振器进行表征","authors":"Jingyi Zhang;Haoqi Lyu;Wuhao Yang;Hai Zhong;Zhuohui Liu;Xiaorui Bie;Xingyin Xiong;Zheng Wang;Chen Ge;Xudong Zou","doi":"10.1109/JMEMS.2024.3392402","DOIUrl":null,"url":null,"abstract":"We studied the temperature effects on the resonant frequency of nano piezoelectric mechanical resonators based on Hf0.5Zr0.5O2 thin films. Two square-shaped resonators of 30 \n<inline-formula> <tex-math>$\\mu$ </tex-math></inline-formula>\n m and 50 \n<inline-formula> <tex-math>$\\mu$ </tex-math></inline-formula>\n m in length were fabricated and tested, having a resonant frequency of 225.8 kHz and 98.5 kHz, respectively. The temperature coefficient of frequency (TCF) of the devices was characterized in the range from −20 °C to 147 °C. Both devices exhibited a positive TCF around 83.6 ppm/°C to 105 ppm/°C in the range from 30 °C to 147 °C, which may result from the combined effect of thermal expansion mismatch between the materials and the temperature coefficient of Young’s modulus of the HZO material. Moreover, the 50 \n<inline-formula> <tex-math>$\\mu$ </tex-math></inline-formula>\n m device shows a negative TCF around −110 ppm/°C to −99.9 ppm/°C within the range from −20 °C to 30 °C, which may be due to stress relaxation during the heating process. These results underscore the significance of HZO material in nanoscale piezoelectric resonator applications and lay the foundation for our future work aimed at developing nanoscale piezoelectric devices based on HZO. [2024-0040]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 4","pages":"405-407"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of a Temperature-Sensitive Nano Piezoelectric Mechanical Resonator With a 20nm Free-Standing Hf0.5Zr0.5O2 Membrane\",\"authors\":\"Jingyi Zhang;Haoqi Lyu;Wuhao Yang;Hai Zhong;Zhuohui Liu;Xiaorui Bie;Xingyin Xiong;Zheng Wang;Chen Ge;Xudong Zou\",\"doi\":\"10.1109/JMEMS.2024.3392402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We studied the temperature effects on the resonant frequency of nano piezoelectric mechanical resonators based on Hf0.5Zr0.5O2 thin films. Two square-shaped resonators of 30 \\n<inline-formula> <tex-math>$\\\\mu$ </tex-math></inline-formula>\\n m and 50 \\n<inline-formula> <tex-math>$\\\\mu$ </tex-math></inline-formula>\\n m in length were fabricated and tested, having a resonant frequency of 225.8 kHz and 98.5 kHz, respectively. The temperature coefficient of frequency (TCF) of the devices was characterized in the range from −20 °C to 147 °C. Both devices exhibited a positive TCF around 83.6 ppm/°C to 105 ppm/°C in the range from 30 °C to 147 °C, which may result from the combined effect of thermal expansion mismatch between the materials and the temperature coefficient of Young’s modulus of the HZO material. Moreover, the 50 \\n<inline-formula> <tex-math>$\\\\mu$ </tex-math></inline-formula>\\n m device shows a negative TCF around −110 ppm/°C to −99.9 ppm/°C within the range from −20 °C to 30 °C, which may be due to stress relaxation during the heating process. These results underscore the significance of HZO material in nanoscale piezoelectric resonator applications and lay the foundation for our future work aimed at developing nanoscale piezoelectric devices based on HZO. [2024-0040]\",\"PeriodicalId\":16621,\"journal\":{\"name\":\"Journal of Microelectromechanical Systems\",\"volume\":\"33 4\",\"pages\":\"405-407\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10518199/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10518199/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了温度对基于 Hf0.5Zr0.5O2 薄膜的纳米压电机械谐振器谐振频率的影响。我们制作并测试了两个长度分别为 30 和 50 m 的方形谐振器,它们的谐振频率分别为 225.8 kHz 和 98.5 kHz。器件的频率温度系数(TCF)在-20 °C到147 °C的范围内进行了表征。在 30 ℃ 至 147 ℃ 范围内,两种器件都显示出约 83.6 ppm/°C 至 105 ppm/°C 的正 TCF,这可能是材料间热膨胀不匹配和 HZO 材料杨氏模量温度系数的共同作用结果。此外,在 -20 °C 至 30 °C 的范围内,50 $\mu$ m 器件显示出约 -110 ppm/°C 至 -99.9 ppm/°C 的负 TCF,这可能是由于加热过程中的应力松弛造成的。这些结果强调了 HZO 材料在纳米级压电谐振器应用中的重要意义,并为我们今后开发基于 HZO 的纳米级压电器件奠定了基础。[2024-0040]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of a Temperature-Sensitive Nano Piezoelectric Mechanical Resonator With a 20nm Free-Standing Hf0.5Zr0.5O2 Membrane
We studied the temperature effects on the resonant frequency of nano piezoelectric mechanical resonators based on Hf0.5Zr0.5O2 thin films. Two square-shaped resonators of 30 $\mu$ m and 50 $\mu$ m in length were fabricated and tested, having a resonant frequency of 225.8 kHz and 98.5 kHz, respectively. The temperature coefficient of frequency (TCF) of the devices was characterized in the range from −20 °C to 147 °C. Both devices exhibited a positive TCF around 83.6 ppm/°C to 105 ppm/°C in the range from 30 °C to 147 °C, which may result from the combined effect of thermal expansion mismatch between the materials and the temperature coefficient of Young’s modulus of the HZO material. Moreover, the 50 $\mu$ m device shows a negative TCF around −110 ppm/°C to −99.9 ppm/°C within the range from −20 °C to 30 °C, which may be due to stress relaxation during the heating process. These results underscore the significance of HZO material in nanoscale piezoelectric resonator applications and lay the foundation for our future work aimed at developing nanoscale piezoelectric devices based on HZO. [2024-0040]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microelectromechanical Systems
Journal of Microelectromechanical Systems 工程技术-工程:电子与电气
CiteScore
6.20
自引率
7.40%
发文量
115
审稿时长
7.5 months
期刊介绍: The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.
期刊最新文献
Front Cover Table of Contents Journal of Microelectromechanical Systems Publication Information TechRxiv: Share Your Preprint Research with the World! Capacitive Micromachined Transducers With Out-of-Plane Repulsive Actuation for Enhancing Ultrasound Transmission in Air
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1